
Separation of Concerns: A Case Study

Jilles van Gurp & Jan Bosch

University of Groningen
Dept. of Mathematics and Computing Science

PO Box 800, 9700 AV Groningen
The Netherlands

[jilles|bosch]@cs.rug.nl
http://segroup.cs.rug.nl/

Abstract. In this paper we present the results of a case study we conducted at
two local SMEs (Small and Medium sized Enterprises) in two different
domains. In the case study we examine how these companies handle separation
of concerns in their respective domains. We focused on which concerns were
perceived as problematic; what kind of design solutions were used to work
around these problems and what the effect of these design solutions was on the
separation of concerns. In our analysis we reflect on if, and how the use of
advanced separation of concerns technology, such as e.g. Aspect Oriented
Programming (AOP), would be useful. An important conclusion of our paper is
that in both cases the companies do not need such tools for separating the
concerns they are aware of (i.e. anticipated concerns) since adequate,
conventional techniques have been applied. The benefit of applying such
techniques to separate the remaining, unanticipated concerns is unclear as well
since it is anticipated that at least some refactoring of the original system would
be required in order to apply such techniques.

1 Introduction

To deal with the ever-increasing complexity a better separation of concerns in
software systems is needed. In the separation of concerns community a number of
problems regarding separation of concerns in large software systems are addressed.
To deal with these problems such approaches as Aspect Oriented Programming [12]
and Multi Dimensional Separation of Concerns [23] are currently being developed.
These approaches give software developers the possibility to modularize their systems
in a more suitable way.

1.1 Goal of this paper

The goal of this paper is to look at separation of concerns in the current practice of
software engineering. Specifically, we are interested in how conventional design
solutions are used to achieve separation of concerns, what the problems are and how
they are addressed. A second topic in our study is if and how the use of advanced
separation of concerns (ASOC) techniques could improve the separation of concerns.

1.2 Cases

We have conducted structured interviews at two SMEs (Small and Medium sized
Enterprises) from two domains in software engineering; i.e. embedded systems and
enterprise systems.

The first company where we conducted interviews, Rohill Engineering B.V. [20],
is a worldwide operating and recognized company, specialized in product and system
development for professional mobile communication infrastructure. Their products
are typically used in communication networks for e.g. police departments, fire
departments or taxi centrals. The hardware Rohill sells consists of off the shelf
components. Their embedded software, however, is proprietary.

The second company is Vertis B.V. [24]. Vertis is an IT service provider that,
among others, implements standard solutions such as Oracle based database products.
The implementation process, depending on the needs of the customer, can be very
extensive and typically also includes system installation, system administrative
services and even training the staff to use the systems. Often systems are sold in
combination with a service contract specifying e.g. how long the systems are to be
maintained by Vertis.

By selecting companies from two domains, we intended to identify whether there
are differences in the way concerns are dealt with in these domains as well as whether
there are commonalities in the way certain concerns are dealt with.

1.3 Remainder

In the next section, we discuss the methodology we used for the case study in more
detail. In Section 3 and Section 4, the two companies are discussed in detail. In
Section 5, we reflect on the results and make some more general observations that are
motivated using examples from the cases. In Section 6, we reflect on the validity of
our case study and highlight its strengths and its weaknesses. Subsequently, we
discuss related work in Section 7, and, finally, in Section 8 we conclude the paper.

2 Methodology

We have considered various ways of conducting our research. Considering the
amount of time and resources available as well as the amount of effort that both
companies were willing to put in our research we have chosen to do a number of
structured interviews with key persons within the companies. Our approach consists
of three steps:
` Preparation. At both companies the structured interviews were preceded by

introductory meetings during which we presented ourselves, explained the research
topic, our methodology and what we expected from them.

` Interviews. After the introductory meetings, appointments were made for
conducting the structured interviews. An important advantage of structured
interviews is that it requires a minimal amount of time from the interviewees. This
is important since all of the persons we interviewed had busy jobs. In addition, a
structured interview is less rigid than e.g. a questionnaire, which allows us to

retrieve company/domain specific information. In many cases, the questions were
used as a starting point for discussion. Yet, because of the structure, we can
compare the interviews. Finally, because we had two interviews at each company,
we were able to validate the statements of the interviewees by comparing their
responses.

` Feedback. The results of the interviews were returned to the interviewees who then
had the opportunity to give feedback and correct things they did not agree with.

2.1 Terminology

As a part of the introductory meetings, we also discussed the notion of separation of
concerns. Unfortunately, the people we interviewed generally were not aware of the
academic terminology we commonly use to discuss this topic such as cross cutting
features, aspect oriented programming, concerns, etc. In order to bypass this issue, we
avoided using such terminology during the interviews and instead tried to formulate
our questions in such a way that our interviewees could understand them and identify
with the topic. Where applicable, we will provide explanations of terminology in the
remainder of the paper.

2.2 Selection of concerns

The purpose of ASOC techniques such as Aspect Oriented Programming or Subject
Oriented Programming [12][10] is to enable programmers to address concerns such as
e.g. synchronization or logging separately and automate the integration of the
separately developed concerns.
Since interview time and the knowledge of our interviewees about ASOC were
limited, we selected a handful of well-understood concerns that typically are of
consideration to some extent in software development. Rather than asking technical
questions about these concerns (which would require lengthy explanation of the
various terminology and influence the interviewees), we instead selected a few
associated quality attributes. This allowed us to bridge the gap in knowledge since the
interviewees were reasonably knowledgeable about these quality attributes since they
had to meet requirements related to these quality attributes. In each of the four
interviews, we confronted the interviewees with questions about the five quality
attributes discussed below.

2.2.1 Performance
Performance requirements can be specified and enforced in many ways. In a real-time
system it is quite common to specify performance requirements explicitly and to
include functionality that monitors whether the requirements are met. In other
systems, the requirements may be somewhat more flexible. Especially real-time
related functionality (e.g. enforcing constraints) is generally seen as crosscutting
[1][12]. In the interviews we tried to recover in what way performance requirements
influenced implementations and how performance requirements were tested. We
asked the interviewees to identify a few typical performance requirements. Then we
asked how they assessed whether these requirements were met and if so, how

assessments were made with regard to performance. In the Rohill case we also studied
performance related design decisions.

2.2.2 Maintainability
A bad separation of concerns translates into higher maintenance cost because when
changes affect such concerns, they typically affect large parts of the source code.
Consequently we included maintainability as a quality attribute in the case study. We
asked the interviewees about the size of a typical system. We also asked about
maintenance effort and if there were any bad practices that were actively fought
against (e.g. multiple inheritance). Finally we asked whether there was a review
process and whether they were familiar with/used refactoring techniques such as those
discussed in [6].

2.2.3 Concurrency/synchronization
Concurrency related functionality, in particular synchronization code, is often used as
an example case for crosscutting features. For example, Kiczalez et al. use
synchronization constraints as an example of aspects [12]. Consequently, we included
the synchronization concern in our study to verify whether this was a real concern in
our cases. We asked what the impact of synchronization issues such as
synchronization code was on the software system. What percentage of the code was
affected by it and whether this code was a source of bugs.

2.2.4 Flexibility
A flexible system makes it easy to make certain kind of changes to it. Flexibility is
not the same as maintainability and often there are conflicting requirements with
respect to both quality requirements. For instance, flexibility-enhancing mechanisms
(e.g. abstract classes) make a system more complex and consequently maintainability
is affected negatively. By making a system flexible, the concerns that are typically
affected by changes are separated in such a way that such changes are easy. In order
to find out whether our interviewees were successful in separating concerns, we asked
them whether they used design patterns to make code flexible. Further more we asked
whether flexibility was considered during design.

2.2.5 Reliability
Low reliability is another symptom of bad separation of concerns. Memory
management is a good example of a concern that is typically problematic with respect
to reliability. Since we suspected in both cases reliability would be important, we
asked how reliability requirements were specified and inquired about the translation
of these requirements into code.

2.3 Interview structure

Since the domains of both cases are very different, the amount of time we spent
discussing these concerns varied between the interviews. For each concern we
prepared a set of questions that were used in each interview. However, when

necessary, we asked additional questions or skipped questions that were not
applicable.

3 Case 1: Rohill

TetraNode is a multi protocol backbone for mobile communication networks that
implements the Tetra standard. Tetra (TErrestrial Trunked RAdio) is an ETSI (the
European Telecommunications Standards Institute [4]) standard for digital trunked
mobile radio. Rohill is currently in an advanced stage of building this software
product.

3.1 Application Domain

Node
Base Station

Base Station

Base Station

Base Station

Node
Base Station

Base Station

Base Station

Base Station

leased liine

leased line

Node
Base Station

Base Station

Base Station

Base Station

terminal

terminal

Fig. 1. A network of TetraNodes

A TetraNode network consists of nodes (usually a PC), base stations (connected to a
node) and terminals (e.g. portable radio’s used in ambulances), which are organized in
a flat network topology not unlike the internet. When the implementation is finished,
Rohill will sell the TetraNodes in various configurations, the terminal-devices are
sold by third parties. The main advantage of the TetraNode network topology is
scalability. Simply by adding nodes, the network can be extended. Each node consists
of a standard PC and a subsystem with interfaces for communicating with base
stations, over e.g. leased lines and interconnection with other nodes. Due to the flat
network topology, a TetraNode network can scale to up to a million users.

At a first glance, TetraNode is very similar to the GSM network used for mobile
phones (GSM is also an ETSI standard). However, there are significant differences in
quality requirements. While both provide digital radio services, there are differences
in network topology, amount of users, typical usage of the network, length of
communication, and so on. As compared to GSM, the Tetra protocol has shorter

connection times (less than 300ms), larger cells (the area around a base station) with
fewer users that typically use the network for short calls to mostly other users in the
same cell (i.e. the communication does not need inter-TetraNode connectivity for
such calls). In addition security is also of importance when a TetraNode network is
used by e.g. the police.

While the Rohill hardware platform consists of mostly of-the-shelf components,
their software is proprietary and is indeed their competitive edge. The software
consists of the TetraNode Foundation Classes (TFC), a support library developed
internally; the implementation of the various protocol stacks and various applications
on top of the protocols implementing such things as routing, database management,
network management, etc. However, in this paper we will focus on the TFC and the
protocol implementations since those components are in a relatively advanced stage
of development.

3.2 Development Method

The development process at Rohill is iterative. Typically there is a new release every
few months that is used for internal testing. Typically these tests involve loading the
software onto test equipment and stress testing it with e.g. simulated attempts to set
up calls.

3.3 Quality attributes

3.3.1 Performance.
The TetraNode hardware architecture consists of both embedded systems and
standard PCs. A performance factor that needs to be taken into account is how much
kilobits can be processed by the hardware when handling speech. Specialized FPGA
chips are often used to improve throughput. On the PCs however, regular chips like
e.g. Intel’s Pentium have been used as well. To maximize throughput, the software
architecture is set up in such a way that data flows through the system efficiently.
There are two notable design decisions that affect performance in the software:

The binary data packets that are inserted in a connection are assembled at the latest
possible moment. This generative approach assures that this computationally
expensive operation is executed only once and that there is no duplication of the data
internally.

It was decided to use C++ templates to make the source code more flexible, despite
the expected performance hit. The reasoning beforehand was that if bottlenecks would
arise, they could be dealt with on an individual basis. Recent testing and optimization
has indicated that performance is not seriously affected by these decisions when the
system is compared with competing systems.

3.3.2 Maintainability.
The TetraNode system has been under development for four years. The software
system is expected to be between 100 KLOC (kilo lines of code) and 150 KLOC
when it is finished. Currently the main components of the system are the TetraNode

Foundation Classes (TFC), a framework of reusable code of about 10 KLOC and the
Protocol implementation (there are more components but we will limit ourselves to
these). The TFC has been finished for a while and has been in maintenance since. The
rest of the system is still being developed, so it is too early to make statements about
the maintainability of the system. However, judging from code samples we have seen,
the library code is reused quite effectively in the various protocol implementations.

Asked about bad practices, the interviewees told us that they avoided the use of
inheritance and preferred to use templates instead. Also the use of pointers was
restricted to object referencing (thus preventing memory leaks). We were also given
access to an extensive code guidelines document detailing how the code should be
structured and how certain C++ language constructs were to be used. In order to
preserve system quality, the chief architects of the software carefully review new
code. The development team of Rohill is too small, however, to have a formal review
process in place.

3.3.3 Concurrency/synchronization.
Much to our surprise (we had anticipated that this would be a crosscutting concern),
the interviewees told us that most of the synchronization related code of the system
was located in the TFC and consequently was not much of a concern when
implementing the protocols. The other classes in the system merely use the library
classes and templates and are therefore free from synchronization issues.

3.3.4 Flexibility.
Neither of the interviewees had read the GoF book on design patterns by Gamma et
al. [7]. However, both of them were aware of the notion of a design pattern and
recognized that they probably implemented a few in the system. While Rohill expects
that the Tetra protocol will see little change in the future, Rohill made an effort to
include a lot of flexibility. Particularly C++ templates have been used frequently to
add genericity to the system. In addition, to keep the software as portable as possible,
they avoided creating too much dependencies between modules and limited
themselves to using only the STL (standard template library that is part of the ANSI
C++ standard) and their own TFC. Consequently, they anticipate little trouble in
porting their software to e.g. Linux in the future.

3.3.5 Reliability.
While Rohill does not employ techniques to improve reliability, they do ensure that
the system is reliable by performing extensive tests. Commonly, test machines run for
weeks on end simulating real world usage of the TetraNode system. Also, there are
some properties of the architecture that have the side effect of improving reliability.
The design decision to put traditionally complicated concerns such as synchronization
in a relatively small, well-designed library, for instance, ensures that the rest of the
system is relatively simple and easy to maintain. Consequently it is also reliable. A
side effect of having a library of reusable code is that this reduces redundancy in the
code and centralizes the more complex and error prone parts of the system in a
relatively compact library ensuring that if bugs surface, they are fixed centrally.

Also contributing to the reliability of the system are code reviews and the coding
guidelines that are used internally. These guidelines, among others, prohibit/limit the

use of bad pointer arithmetic, preprocessor directives and stimulate the use of
templates and other advanced C++ constructs.

3.4 Summary

Rohill identified several concerns when they were designing their system and have
optimized their software design for flexibility in those concerns.

First of all hardware portability is important to them so they have limited
themselves to using ANSI C++ and only the standard C++ libraries (STL). This
allows them to recompile on any platform with an ANSI compliant compiler. The
benefit of this decision is twofold: first they can deploy on multiple platforms and
second they can develop on e.g. MS Windows and benefit from the availability of
sophisticated development tools and then deploy the compiled software to the target
platform (e.g. VxWorks).

A second concern is the management of data packets used by the various protocol
stacks. The designers of the system recognized early on that while the exact bit format
of those packets varied from protocol to protocol, the information stored in the
packets was more or less similar. Rather than reinventing this functionality for each
protocol, Rohill created a framework for dealing with the packets.

4 Case 2: Vertis

Vertis is a IT services company that, among others, customizes, installs and maintains
information systems primarily based on Oracle’s database and tools. Typically this
means that most of the software development is done in Oracle Designer, a tool for
building database applications.

4.1 Application Domain

While Vertis has a great deal of expertise in database products and related services,
the persons we interviewed were mainly involved with projects that make use of
Oracle Designer. Oracle Designer is a tool that allows developers to specify
application logic and user interface for database applications. The tool then
automatically generates the necessary code to execute the application on top of an
Oracle Database. Typically the tool is used to create administrative applications that
are generally specific for the company they are developed for (i.e. they are one of a
kind applications).

4.2 Development Method

The development method at Vertis can be characterized as following the waterfall
model. Even though Vertis is increasingly adopting an iterative method called DSDM
(Dynamic System Development Method), the tools and documents are still based on
the old style of development. The process can be summarized as follows:

` First requirements are collected. Depending on the size of the project, the
requirements are documented in more detail. Also the initial documents are often
used as a basis for e.g. contracts.

` Based on the requirements, developers start specifying the databases schemas,
design the user interface and define the application logic.

` After these artifacts have been defined Oracle designer combines the defined
artifacts with predefined artifacts (e.g. Headstart, a set of predefined artifacts, from
Oracle Consulting Services is used extensively) and generates an executable
product.

The process is driven by a set of template documents that are part of the Oracle
Custom Development Method (CDM). The document templates cover the whole
software development process from requirements collection until deployment. The
individual documents are considered to be deliverables of the various phases a project
goes through. Depending on project size these templates are filled in more or less
detail. For larger projects it is common that deliverables go through an extensive
review process before being delivered to the customer.

4.3 Quality attributes

Unlike Rohill, Vertis works on a per project base. Rather than highlighting a concrete
project within Vertis, we interviewed the interviewees about how the quality
attributes are dealt with in general.

4.3.1 Performance.
Typically no explicit performance requirements are set on a project. However, there
are some implicit performance requirements. Typically Vertis applications are
interactive database applications and it is well understood that, for instance, in general
queries should take only a few seconds at most.

In most cases the performance bottleneck is the database performance.
Troublesome queries can be spotted using e.g. Oracle tools for analyzing queries and
database schemas. If necessary, adjustments are made to optimize either database
queries or schemas for the desired performance. A major problem in this area is that
performance optimizations such as database indexes that are used to address
performance problems may affect other parts of the system negatively. Consequently,
performance tuning can be quite complicated and involves a lot of testing. However,
since the frequency of such problems is relatively low, performance is only
considered explicitly when problems are identified.

4.3.2 Maintainability.
Maintainability is increasingly important to Vertis. One of the interviewees indicated
that the majority of development effort goes into maintenance of existing system.
Less than half of the development concerns building new systems.

When developing new applications using Oracle Designer, developers try to avoid
having to edit generated application code even though this is initially more expensive
than editing the generated code by hand. In the past, editing generated code was often
used as a quick way to fix little bugs and add minor features. Unfortunately, doing so

also prevents that changes are made to the design without the post generation changes
being lost.

Currently, Vertis is preparing a transition to a newer version of Oracle Designer
that is able to generate web based applications rather than the traditional client server
applications. Little trouble in the conversion process is expected with applications that
are 100% generated since most of the old designs can be reused in the new version of
Oracle Designer, allowing for an easy re-generation of the applications. Thus, a key
design decision that enables this smooth transition has been to never edit the
generated code.

4.3.3 Concurrency/synchronization.
While enterprise systems such as delivered by Vertis are generally distributed-, multi-
tier systems, the complexity of handling the complexity of dealing with such system
is fully encapsulated by the frameworks and tools used by Vertis.

4.3.4 Flexibility.
The generative approach used by Vertis ensures that radical changes to the system can
be made by changing the generator. The prime example of this is the transition from
client server based applications to web applications in the newer versions of Oracle
Designer. While the generative approach is very flexible, Vertis is not in control of
the generator. So it needs additional means of getting flexibility in its systems. One
way of doing so is to carefully design the databases schemas to allow for e.g.
additional fields. Another way of adding more flexibility is to make the data objects
more generic to allow for e.g. run-time flexibility.

4.3.5 Reliability.
While reliability is an issue in enterprise systems, it is mostly taken care of in the
Oracle tools and products. Additional measures Vertis takes to improve reliability are
enforcing code guidelines provided by Oracle’s CDM method and performing code
reviews. The code reviews can be quite rigid, especially in larger projects.

4.4 Summary

One would expect that the quality attributes we selected are very relevant in the
domain of business applications. Interestingly, Vertis has managed to separate its
primary concern, application logic, from the concerns we targeted in this study. By
using and relying on application frameworks provided by third parties, Vertis has
largely avoided that their products are tangled with e.g. performance related code or
complex synchronization code. Our main conclusion for the Vertis case is that the
domain in which they operate is so mature that the framework and tools they use
provide adequate support for meeting the quality requirements of their projects.

5 Analysis

In this section we provide an analysis of our experiences in both cases. In our analysis
we make a distinction between anticipated concerns and unanticipated concerns. The
difference is that based on the requirements that are known in advance and the
developer’s experience with implementing applications in the domain, a set of
concerns can be anticipated that are likely need to be addressed. We have found that
in both domains we examined in our case study, such concerns exist. The remaining
concerns are discovered later in the development cycle (e.g. during maintenance) and
are therefore referred to as unanticipated.

For both types we discuss a number of examples in the context of the case studies.
Further more, we look at the typical design solutions used to achieve separation of
concerns. Finally, we also reflect on the usefulness of the application of Advanced
Separation of Concerns (ASOC) technologies such as Aspect Oriented Programming
and Subject Oriented Programming in these cases.

5.1 Anticipated Concerns

Anticipated concerns are identified early in the development process (e.g. during
requirements analysis or simply because developers know from previous experience
that a concern may become problematic if they don’t do anything about it).

5.1.1 Examples
For Rohill we have been able to identify three different anticipated concerns that have
been separated:
` Throughput. To have maximum throughput, an effort is made not to duplicate

data packages that flow through the protocol stack. This design decision has a
profound effect on the architecture.

` Protocol implementation. Most of the system’s implementation is a
straightforward implementation of the Tetra protocol specification. A
sophisticated, C++ template-based architecture for implementing protocols is used.
This architecture separates the functionality of the individual protocols from the
generic functionality of managing finite state machines.

` Platform independence. To stay platform independent, the TFC contains a set of
so-called OS-wrappers that abstract from platform OS-specific implementations of
various functionality needed in the TetraNode system.

In the Vertis case, we have found that the following concerns have been separated:
` All concerns addressed by the generation tool. The generation tool encapsulates

many concerns such as synchronization, security, network communication etc.
While these concerns may still be mixed within the tool, this is of no concern to
Vertis since Oracle is responsible for its implementation. The decision to use this
product effectively separates all concerns addressed by this tool from the
implementation of Vertis systems (assuming 100% generation of the systems).

` Application logic. One of the primary concerns that needs to be addressed by
Vertis is implementing the functionality. Doing so is pretty much a straightforward
conversion of the functional requirements to code. This is a good indication that

the application logic concern is well separated from quality requirement related
concerns such as e.g. synchronization.

` Database performance. Aside from the functionality, a second concern is the
database schema design and optimization for certain queries. While tools exist to
assist in getting optimal performance, it is very much a matter of manually fine
tuning the system.

5.1.2 Traditional design solutions
Sophisticated design solutions are available for achieving the kind of separation of
concerns needed in both cases. Within Rohill, a combination of two design solutions
is used to achieve the desired separation of concerns:
` Object Oriented Frameworks. The TetraNode Foundation classes provide

wrappers for OS functionality and base classes that lay out the systems
architecture.

` C++ templates. In addition to object oriented frameworks, C++ templates are used
to provide generic, reusable behavior for certain aspects of the system. A good
example of this is manipulating the data packets that flow through the various
protocol stacks. Often there are small differences between the ways these protocols
data format. However, using the templates, protocol implementers need not worry
about these differences.

Within Vertis, the architecture of the system is dominated by Oracle Designer.
Consequently, there are no Vertis specific design solutions.
` Frameworks + generator. Oracle designer provides application frameworks and

tool support for implementing the type of applications Vertis creates. The main
difference between the Oracle Designer and e.g. the Vertis framework is that the
frameworks provided by Oracle are more mature. In [19] a few different
framework patterns are identified. In terms of these patterns the Oracle framework
is much more advanced since, in addition to the reusable architecture, also a set of
reusable components and a high level configuration tool are provided.

` Code generation. Another thing the Oracle Designer does is simplify the
integration of the various artifacts included with the tool.

5.1.3 ASOC design solutions
Neither company uses ASOC solutions, so we will focus on how they could have used
such solutions instead. Considering how both Rohill and Vertis make use of
conventional techniques in order to separate concerns in their respective domains and
how successful they are in doing so, we don’t expect that they would derive much
benefit from using advanced separation of concerns techniques such as e.g. aspect
oriented programming or subject oriented programming in the context of their
existing systems.

In the case of Rohill, the concerns that were anticipated have been separated out
into the TFC (TetraNode Foundation Classes). While theoretically, the design of this
TFC could be improved by using more advanced techniques, this arguably would not
help much since the TFC is relatively small compared to the rest of the system.

Vertis would not derive much benefit from using ASOC technology either. Vertis
simply delegates any concerns related to e.g. quality requirements to the Oracle
Designer tool. Of course Oracle might find that ASOC technology would be useful

for implementing this tool. However, Vertis is not concerned with the tool’s
implementation but only with using the tool to implement application logic.

5.2 Unanticipated Concerns

Unanticipated concerns typically become problematic during later stages of the
development, for instance, because they are affected by new requirements. Typically,
using e.g. refactoring techniques to separate such concerns has become more or less
unfeasible by then due to the accumulated investment in the development of the
system. Exploratory work, such as that of Murphy et al. [16], suggest that many
concerns surface during development rather than that they are anticipated up front.
However in our experience this may also indicative of an immature domain or a lack
of domain understanding.

5.2.1 Examples
In the case of Rohill, we have to hypothesize about unanticipated concerns since the
system is still under development. Consequently, any unanticipated concerns have yet
to surface. Based on our own analysis, we have found that the following concerns
may become problematic in the future under certain conditions (e.g. a change in
requirements):
` Design decision. The architecture of Rohill’s TetraNode software is essentially a

large finite state machine (representing the TetraNode protocol) implemented using
C++ templates. While this appears to be a sound design decision (considering the
size of the Tetra specification and the Rohill’s relatively small implementation of
it), any decision to change the design might have system wide impact.

` Billing. In an earlier case study [21], we examined a system of a large
telecommunications company that took care of billing customers for services on a
telecommunication network. Changes in the billing concern caused major changes
in the architecture for that system. While such billing functionality is unlikely to be
required of the TetraNode system (even thought there is some rudimentary
functionality and hooks for it in the system), it might very well cause some
problems if it did since billing typically crosscuts the system. Also it is a good
example of a change in concerns. Right now billing is not so important since
TetraNode networks are not used for public networks.

As mentioned earlier, most of Vertis’ development concerns maintenance of earlier
projects. Such maintenance activities involve adding functionality and adding new
functionality to existing systems. Consequently, the unanticipated concerns have to be
looked for in this area:
` Unsupported functionality. Since Vertis uses a code generator to generate

applications, it is important that they keep changes restricted to editing the pre-
generation artifacts such as predefined database forms and functionality. However
doing so also prevents that functionality not supported by the generator is used.
Until a few years ago it was common to make changes in the generated code since
doing so is generally much easier for smaller changes. However, doing so also
prevents editing the pre-generation artifacts since that requires reverse engineering
the changed code. Consequently maintenance cost of these artifacts is much higher
compared to a situation where the generated code is not edited.

` User interface. Three generations of Oracle designer can be distinguished. The
first generation created text based database applications, the second generation
generated GUI based applications and the latest generation can also generate web-
based applications. Since Vertis tries to prevent post generation editing of the
systems, one would expect that by simply upgrading Oracle Designer, new
applications can be generated. For the last generation this is indeed more or less
true, however the transition from the first to the second generation was less smooth
due to the fact that this transition occurred before the decision not to do post
generation editing was made and because the design of the user interface contained
things that were specific for text based interfaces.

5.2.2 Traditional design solutions
While Rohill has made an effort to make their design flexible, it is simply impossible
to anticipate all future requirements. When unanticipated concerns need to be
incorporated the following techniques can be used:
` Refactoring. As discussed in [16], it is possible to separate a concern from other

concerns in an existing OO system using conventional OO techniques (Murphy et
al. use a process based on lexically analyzing source code with tools like for
instance grep). Typically, the process involves refactoring and restructuring the
code. Using these design techniques, software architects can optimize their designs
for concerns. However, applying such techniques later in the development process
can be costly. Aside from the cost factor, the refactored system may be
incompatible with the old system so any depending systems need to be updated as
well.

` Compromise the design. When redesigning is no option (e.g. because of
compatibility reasons), developers may choose to add new functionality while
preserving the original design as much as possible. Generally this increases
complexity of the system significantly and ultimately it may lead to design erosion
(also see [9]).

In Vertis, addressing unanticipated concerns may be hard to address since essentially,
the architecture of the system is limited by what the Oracle tool generates.
Consequently they only have one option:
` Post generation editing. When functionality that is not supported by Oracle

Designer is needed, it can be added by editing the generated code. Of course there
is no guarantee that the new functionality fits in nicely with the generated code so
potentially, refactoring of the generated code is needed as well. Since the Oracle
Designer tool has improved substantially over the last few years, post generation
editing of code is generally discouraged within Vertis because of the higher
maintenance cost (even though initial development is considered to be cheaper).

` Not using the generator. This way all the functionality that is normally generated
needs to be implemented as well. In most cases it therefore is not a feasible option.

5.2.3 ASOC design solutions
Techniques such as Aspect Oriented Programming could be used to implement
unanticipated concerns. However, as discussed in [16], the usage of e.g. AspectJ (an
aspect oriented version of Java) or HyperJ (a subject oriented programming) usually
requires that the original program is adjusted as well. Consequently, it cannot be

assumed that these techniques can be applied to add new concerns to an existing
system without requiring that the original system is changed as well.
` Billing aspect. In the case of Rohill, using e.g. Aspect Oriented Programming

would seem ideal to implement the billing concern. Billing is a good example of a
cross cutting concern since it has a relatively well defined set of functionality that
needs to interact with a system in multiple places (in AspectJ such places would be
referred to as joinpoints). However, it is uncertain that such joinpoints are readily
available in the TetraNode system. The work by Murphy et al. [16] suggests that
refactoring the system to obtain these joinpoints might be necessary.

` Apply ASOC to generated code. In Vertis, the ASOC technologies can only be
applied to the generated code. Unfortunately, such a thing would most likely
require editing the generated code manually so it is not a very attractive option.

5.3 Summary

Table 1 Design solutions for anticipated and unanticipated concerns

SOC Anticipated
Concerns

Unanticipated
Concerns

Conventional
techniques

The systems can be designed to
handle anticipated concerns
well.

Potentially, a lot of refactoring
is needed.

ASOC
techniques

Not needed when conventional
solutions are available but may
improve the flexibility of the
design.

Of limited use due to the need to
change the existing system.
However, it may be a better
option than using conventional
techniques.

In Table 1, we have summarized our analysis. While the two domains we included in
our case study are very different, the analysis shows that our conclusions can be
generalized. When concerns are anticipated, a system’s design is optimized for these
concerns in such a way that these concerns are separated. In both cases we have
observed that conventional techniques allowed for good separation of the known
concerns. In one of the cases a generator was commonly used to compose the
remaining concerns with the other concerns.

Typically, using ASOC techniques for anticipated concerns may improve the
design, however conventional techniques do the job well enough that these techniques
are not really needed. With unanticipated concerns, extensive refactoring may be
needed to achieve separation of concerns using conventional techniques. Using ASOC
technology may help but even then, laborious refactoring can probably not be
avoided.

Exploratory studies such as [16], suggest that many concerns surface during
development rather than that they are anticipated up front. While this case study
somewhat contradicts this claim since in both cases we have found relatively mature
systems with a good level of separation of concerns, it is also very clear that most
concern related problems arise from unanticipated concerns rather than anticipated
concerns. Therefore we believe that future research in the ASOC community should
focus on providing support for the separation of unanticipated concerns.

Meanwhile, adopting ASOC technologies does not seem to have a negative impact.
Lippert and Lopes [13] conclude that “The worst case scenario with aspects is not
much worse than the original implementation“ in their case study. Consequently, a
case can be made for opportunistically adopting e.g. Aspect Oriented Programming in
order to derive the benefits at a later stage.

6 Limitations of this study

In this section we will discuss the validity of the case study and discuss the way it was
executed. Our case study consists of four structured interviews at two companies from
two different domains.
` Validity of the answers. In each company we interviewed two persons. This

allowed us to compare their answers and resolve inconsistencies between the
answers during the feedback phase. In addition, if both interviewees give the same
answers, that is a good indication of the validity of the answer.

` Minimizing problems. When discussing quality issues there is a risk that
developers tend to be reluctant to admit there are quality issues. Consequently, they
may downplay relevant issues. However, in both cases we interviewed
experienced, senior developers and we are confident that their answers were
accurate.

` Disjunct domains. The domains in which the two companies operate are very
different. This means that any conclusions we can generalize for these two cases
are likely applicable to other domains and companies as well. However, additional
case-studies are needed to confirm such conclusions.

` Representative cases. Even though we believe otherwise, there is a risk that these
companies may not be representative for their respective domains and that some of
the conclusions we have drawn cannot be generalized.

` Knowledge gap. Doing an ASOC casestudy by interviewing software engineers
has the limitation that generally, software engineers have no knowledge of the
related terminology since most ASOC material available is of a rather academic
nature. We bridged the gap in knowledge by discussing in terms of quality
attributes rather than concerns. This approach introduces a necessary level of
indirection and also requires an additional interpretation step in order to relate the
interviews to separation of concerns. Training the interviewees would solve this
issue. However, in addition to the fact that this would take a lot of effort it also has
the side effect of influencing the interviewees, which would make it harder to
generalize our conclusions.

` Number of quality attributes. We limited the interviews to five quality attributes.
Consequently we may have overlooked important concerns that affect other quality
attributes (e.g. security). Adding more quality attributes would have required us to
either have more/longer interviews or reduce the amount of time for discussing
each concern. We feel that given the two hour time slot reserved for the interviews
this is the best we could do.

The methodology we applied to this case study is well suited considering the time
constraints. It allows for comparing the results of each case because of the interview
structure. Yet, it also allows us to extract case specific information. Unfortunately,
our methodology also has some inherent limitations that limit the scope of our

conclusions. The uncertainty of our results resulting from these limitations can be
addressed by conducting more extensive case studies in other domains.

7 Related Work

7.1 Separation of Concerns

By separating crosscutting concerns at the implementation level, the effect of changes
affecting only a particular concern can be isolated. E.g. by separating the concern
synchronization from the rest of the system, changes in the synchronization code will
not affect the rest of the system. Examples of approaches that aim to improve
separation of concerns are Composition Filters [1], Aspect Oriented Programming
[12], Subject Oriented Programming [10] and Multi Dimensional Separation of
Concerns [23]. An issue with these approaches is that these are mostly
implementation level approaches. While some approaches for using ASOC on the
detailed design level have been suggested (e.g. [4]), good design level equivalents of
the concepts used in the implementation level ASOC techniques are currently lacking.
Consequently not much benefit is derived from using them for anticipated concerns
since typically such concerns can already be addressed using conventional design
techniques. Since using such techniques results in a system that is not explicitly
prepared for deploying ASOC techniques, the use of such techniques for
implementing unanticipated concerns is limited too since typically this requires that
the system is refactored in some way [16].

7.2 Design techniques

In both cases, OO Frameworks are used. Roberts and Johnson [19] describe a few
basic concepts and related terminology. Also they present a pattern language that
suggests how a framework approach can be adopted. In [8] we describe a few
guidelines that can help improve the flexibility and maintainability of OO
frameworks.

In the absence of mature separation of concerns techniques, developers can resort
to introducing variability into their software architectures. Fowler et al. [6] present an
overview of techniques that can be used to refactor OO systems. Such techniques can
be used to use design patterns such as described by Gamma et al. [7] for architectural
patterns such as described by Buschmann et al. [3].

7.3 ASOC case studies

Murphy et al. [16], present a study that describes how to medium sized OO programs
were re-architected using three different separation of concerns techniques: AspectJ,
HyperJ and an ad hoc method invented by one of the authors called lightweight
concern separation. Important conclusions of this work is that applying such

techniques to an existing OO system cannot be done cleanly in most cases (i.e. it is
necessary to refactor the system to apply these techniques).

In [14], a case study about the application of an aspect oriented version of CLOS to
an image processing software package. However, this case study is explicitly focused
on demonstrating the capabilities of AOP and the example involved is an academic
case rather than an industrial one such as our case. In another AOP case study by
Lippert and Lopes [13], an existing OO system is refactored. Interestingly this leads
to a substantial reduction in size. However it should be noted that the OO system
examined is relatively small (approximately 44,000 lines of code) compared to our
cases and that the amount of work needed to refactor the system is probably
substantial.

Finally, Kersten and Murphy [11] present an AOP case study that focusses on the
practical side of adopting an AOP approach. One of the lessons learned in this paper
is that proper design constructs for aspects would be useful and that one should be
careful not to make the code to complex.

7.4 Other work

In earlier case studies [14][21] and [9] we have found that software designs tend to
erode over time. Due to the fact that incremental changes are not properly designed
the system increasingly becomes less prepared for future incremental changes.
Systems that were optimally designed for anticipated concerns are gradually
refactored to deal with new requirements also affecting unanticipated concerns. As
this study argues and as is confirmed in the study by Murphy et al. [16], simply
applying ASOC technology to existing systems in order to separate these concerns
potentially involves substantial refactoring of the original system.

8 Summary

In this paper we present the results of a case study we conducted at two local SMEs in
two domains. The goal of our study was to find out how concerns are separated in
industrial products. A secondary goal was to research how ASOC technology could
be used to improve things. Due to the inherent limitations of a case study, we limited
ourselves to conducting structured interviews. A discussion of this method can be
found in Section 2 and Section 6. Our conclusions of this case study can be
summarized as follows:
` In both cases we have found that effective design solutions were used to separate

the so-called anticipated concerns in such a way that expected future requirements
can be met with little effort. Consequently, the use of ASOC technology to
separate such concerns may be useful but is not likely to improve separation of
concerns much.

` The systems are not prepared for unanticipated concerns that may, for instance, be
affected by unexpected requirements. In the case of Rohill it is too early to identify
such concerns since the system is still under development. In the Vertis case,
however, experience shows that unexpected requirements that affect unanticipated

concerns in the system, that are not addressed effectively by the tool they are using,
may pose serious problems.

` Existing work (e.g. [16]) suggests that applying ASOC technologies to existing OO
systems may potentially require that the system is refactored. Consequently we
conclude that using such technologies in the cases we discuss in this paper would
not be of much help in separating the unanticipated concerns.

While we are confident these conclusions are valid for both cases, only additional,
more extensive studies may show that these conclusions can be generalized. However,
the conclusions are in line with our experiences with previous cases (e.g [9][14][21]).
In our discussion of the research method (See Section 6), we have listed a number of
issues with the method. In order to address these issues, further case studies are
needed.

We are currently considering conducting a survey among senior level software
engineers at various companies in order to find out whether our conclusions are valid
for a wider range of domains. By sending this survey to a large group of people, we
may be able to further generalize our conclusions. In addition, repeating this case
study in a more extensive form (e.g. by including more quality attributes) may
enhance our conclusions.

9 Acknowledgements

We would like to thank Rohill B.V. and Vertis B.V. for their participation in our case
study and their invaluable feedback on the results.

10 References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, “Abstracting Object
Interactions Using Composition Filters“, Proceedings of the ECOOP '93 Workshop
on Object-Based Distributed Programming, Springer-Verlag, pp. 152-184, 1994.

[2] Aspectj, “The AspectJ Programming Guide”,
http://aspectj.org/servlets/usersGuides/prog/progguide.htm, last verified 20 August
2001.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, “Pattern-Oriented
Software Architecture: A System of Patterns”, John Wiley & Sons, 1996.

[4] S. Clarke, W. Harrison, H. Oscher, P. Tarr, “Subject Oriented Design: Towards
Improved Alignment of Requirements, Design and Code”, OOPSLA ’99.

[5] ETSI homepage, http://www.etsi.org/.
[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, “Refactoring - Improving the

Design of Existing Code“, Addison Wesley, 1999.
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns - Elements of

Reusable Object Oriented software”. Addison-Wesley, 1995.
[8] J. van Gurp, J. Bosch, "Design, Implementation and Evolution of Object Oriented

Frameworks: Concepts & Guidelines", Software Practice & Experience no 33(3), pp
277-300, March 2001.

[9] J. van Gurp, J. Bosch, “Design Erosion: Problems & Causes”, submitted May 2001.
[10] W. Harrison, H. Ossher, “Subject-Oriented Programming (A Critique of Pure

Objects)“, Proceedings of OOPSLA ‘93, pp 411-428.

[11] M. Kersten, G. Murphy, “Atlas: A Case Study in Building a Web-Based Learning
Environment using Aspect-oriented Programming“, Proceedings of OOPSLA ‘99.

[12] G. Kiczalez, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier, J.
Irwin, “Aspect Oriented Programming“, Proceedings of ECOOP 1997, pp. 220-242.

[13] M. Lippert, C. Lopes, “A study on exception detection and handling using aspect
oriented programming“, Proceedings of ICSE 2000.

[14] M. Mattsson, J. Bosch, “Framework Composition Problems, Causes and Solutions”,
Proceedings Technology of Object-Oriented Languages and Systems, USA, August
1997.

[15] A. Mendhekar, G. Kiczales, and J. Lamping. “RG: A case study for aspect-oriented
programming”, Technical Report SPL97-009P9710044, Xerox PARC, Feb. 1997

[16] G. C. Murphy, A. Lai, R. J. Walker, M. P. Robillard, “Separating Features in Source
Code: An Exploratory Study“, Proceedings of ICSE 2001, pp. 275-284.

[17] G. C. Murphy, R. J. Walker, E. L. A. Baniassad, “Evaluating Emerging Software
Development Technologies: Lessons Learned from Assessing Aspect-oriented
Programming“, IEEE Transactions on Software Engineering, 25(4):438--455,
July/August 1999.

[18] W. Pree, K. Koskimies, “Rearchitecting Legacy systems - Concepts and Case study”,
First Working IFIP Conference on Software Architecture (WICSA '99), pp. 51-61,
February 1999.

[19] D. Roberts, R. Johnson, “Patterns for Evolving Frameworks”, Pattern Languages of
Program Design, vol 3, pp. 471-486, Addison-Wesley, 1998.

[20] Rohill website, http://www.rohill.nl/.
[21] M. Svahnberg, J. Bosch, “Evolution in Software Product Lines: Two Cases”, Journal

of Software Maintenance, Vol. 11, No. 6, pp. 391-422, 1999.
[22] M. Svahnberg, J. van Gurp, J. Bosch, “A Taxonomy of Variability Realization

Techniques“, submitted June 2001.
[23] P. Tarr, H. Ossher, W. Harrison, “N Degrees of Separation: Multi-Dimensional

Separation of Concerns“, Proceedings of ICSE’99, pp. 107-119.
[24] Vertis website, http://www.vertis.nl/.

