
1

On the Implementation of Finite State Machines

Jilles van Gurp & Jan Bosch
[Jilles.van.Gurp|Jan.Bosch]@ipd.hk-r.se

University of Karlskrona/Ronneby
Department of Software Engineering and Computer Science

Soft Center, S-372 25 Ronneby
http://www.ipd.hk-r.se/[jvg|bosch]

tel +46 457-28651/fax +46 457-27125

Keywords. Finite State Machines, State pattern, Implementation issues, Blackbox frameworks

Abstract. Finite State Machines (FSM) provide a powerful way to describe dynamic behavior of
systems and components. However, the implementation of FSMs in OO languages, often suffers
from maintenance problems. The State pattern described in [5] that is commonly used to
implement FSMs in OO languages, also suffers from these problems. To address this issue we
present an alternative approach. In addition to that a blackbox framework is presented that
implements this approach. In addition to that a tool is presented that automates the configuration
of our framework. The tool effectively enables developers to create FSMs from a specification.

1 Introduction
Finite State Machines are used to describe reactive systems [7]. A common example of such a system
is a communication protocol. TCP (Transmission Control Protocol [16]) for instance can be repre-
sented by a FSM. When such systems are implemented, the implementation reflects the finite State
machine. FSMs are also used in OO modeling methods such as UML and OMT. Over the past few
years, the need for executable specifications has increased [2]. The traditional way of implementing
FSMs does not match the FSM paradigm very much, however.
Finite State machines can be described as a set of:
• States. The different states the FSM can be in.
• Input events. This could for instance be the arrival of some data at a FSM or it could be a Timer

that runs out. It could also be the entry into a new State (after a state-change) or the exit of a State
(before a State change). Input events are sometimes referred to as messages.

• Output events. This is an action that takes place after an input event arrives at a State machine. It
could be part of a transition (see below) or it could be part of a State (for instance a state-exit-out-
put event triggered by an input event that causes a transition.

• Transitions. A transition has a source State and a target state. Transitions are triggered by an input-
event. The triggering may also cause the launching of one or more output-events.

In figure 1, the FSM-graph of our running example is shown (the example will be presented in sec-
tion 2). The arrows are labeled with an event and an (optional) action/output event. A transition
occurs if the system is in the State on the beginning of the corresponding arrow and the event on the
transition occurs. The action is executed and afterwards the system is in the State on the end of the
arrow. This simple model can be extended in many ways. An obvious extension is to make events
conditional. An other possible extension is to have State entry and State exit actions that are executed
when a State change occurs.
In this paper the following definition of a State machine will be used: A State machine consists of
states, events, transitions and actions. Each State has a (possibly empty) state-entry and a State exit
action that is executed upon State entry or State exit respectively. A transition has a source and a tar-
get State and is performed when the State machine is in the source State and the event associated with
the transition occurs. For a transition t for event e between State A and State B executing transition t
(assuming the FSM is in State A and e occurred) would mean: (1) execute the exit action of State A,
(2) execute the action associated with t, (3) execute the entry action of State B and (4) set State B as

2

the current state.
Mostly the State pattern [5] or a variant of this pattern is used to implement FSMs in OO languages
like Java and C++. The State pattern has its limitations when it comes to maintenance, though. Also
there are two other issues (FSM instantiation and data management) that have to be dealt with. Those
issues are further explained in section 3. In this paper we examine these problems and provide a solu-
tion that addresses these issues. Also we present a framework that implements this solution and a tool
that allows developers to generate a FSM from a specification.
The remainder of this paper is organized as follows: In section 2, two ways of implementing a FSM
are introduced: the procedural approach and the State pattern. In section 3 issues with both
approaches to implementing FSMs are discussed. In Section 4, a solution is described for these issues
and our framework, that implements the solution, is presented. A tool for configuring our framework
using XML is presented in section 5. In section 6 assessments are made about our framework.
Related work is presented in section 7. We conclude our paper in section 8.

2 Implementing a FSM
As a running example we will use a simple FSM called WrapAText. In figure 1 the diagram for this
FSM is presented. The purpose of this FSM is very simple. It inserts a newline in the text after each
80 characters. To do this it has three states representing a line of text. In the Empty State (which also
is the default State for this FSM), the FSM waits for characters to be put into the FSM. Once a char-
acter is received (feedChar), it moves to the Collect State where it waits for more characters. If 80
characters have been received it moves to the Full State using the EOL (end of line) event. The line is
printed on the standard output and the FSM moves back to the Empty State (release event) for the
next line of text.

2.1 Procedural Languages
In procedural languages FSMs can be implemented efficiently using a double case statement. The
outer case statement selects on the current State of the FSM. Then the inner case statement selects the
appropriate behavior for the current State given the type of event that was sent to the FSM (also see
the example below). Of course it can also be done the other way around (i.e. first select the event and
then the state). What’s most efficient depends on the number of events and states and on the likeli-
hood that events or states are added.

switch(state)
 case Empty: switch(event)
 case feedChar: ...
 case EOL: ...
 case release: ...
 case Collect: switch(event)
 case feedChar: ...
 case EOL: ...
 case release: ...
 case Full: switch(event)
 case feedChar: ...
 case EOL: ...
 case release: ...

Suppose the system is in the Empty State and a feedChar event is received. The outer case statement

Empty Collect Full
feedChar

feedChar

EOL

release
FIGURE 1. WrapAText: a FSM for wrapping text

3

first selects Empty. Then the inner case statement defined at that point selects feedChar. At that point
the behavior for the transition from Empty to Collect is defined. In this approach, a lot of code is
duplicated and reuse of code is very difficult. Also redundant code is added (note that the Empty
states also has behavior for the EOL and release events even though these events do not occur in this
state). The only way to let two states do the same thing for a certain event (this would be useful for
the feedChar event) is to copy the code between the two cases. Also the code for entry and exit
actions must be duplicated for transitions leaving a certain State or entering a certain state. In addi-
tion to this the duplicated code can make maintenance very tedious:
• Bugs have to be fixed more than once
• It is easy to forget a piece of code
• The code becomes very complex.
Of course some tricks can be applied that make the code a bit more modular. One could for instance
move the actual implementation to separate procedures. This way, that code no longer has to be cop-
ied. The procedure calls, however, still need maintenance. Also naming can be a problem. A name
that makes a lot of sense at first might not be suitable after a change. If, for instance, the code for
event x in State y is put in a procedure called state_y_event_x(), a different name will have to be
used if the transition triggered by the event has to be moved to another State (because of a source
State change).
The procedural paradigm is an unattractive way to implement a FSM. The main reason it is used any-
way is that it gives the best performance and that in some cases the implementations are going to be
used over long periods of time without a change. This justifies investing the time and effort to build
an implementation in a procedural language. Also code size can be an issue. In embedded machines
for instance, memory size and processor capacity are limited.

2.2 The OO Approach
By using object orientation, the use of case-statements can be avoided through the use of dynamic
binding. Usually some form of the State pattern is used to model a finite State machine (FSM) [5].
Gamma et al motivate using the State Pattern as follows: “An object ‘s behavior depends on its State,
and it must change its behavior at run-time depending on that State” and “Operations have large,
multipart conditional statements that depend on the object’s State” [5]. In other words, each time
case statements are used in a procedural language, the State pattern can be used to solve the same
problem in an OO language. Each case becomes a State class and the correct case is selected by look-
ing at the current state-object. Each State is represented as a separate class. All those state-classes
inherit from a State class. In figure 2 this situation is shown for the WrapAText example. The Con-
text offers an API that has a method for each event in the FSM. Instead of implementing the method

EmptyState

feedChar(Character c)

CollectState

feedChar(Character c)
EOL()

FullState

release()

WrapATextState

feedChar(Character c)
EOL()
release()

Context

feedChar(Character c)
EOL()
release()

1

current state+is in

1

FIGURE 2. The state-pattern.

4

the Context delegates the method to a State class. For each State a subclass of this State class exists.
The context also holds references to variables that need to be shared among the different State
objects.
At run-time Context objects have a reference to the current State (an instance of a State subclass). In
the WrapAText example, the default State is Empty so when the system is started Context will refer to
an object of the class EmptyState. The feedChar event is delivered to the State machine by calling a
method called feedChar on the context. The context delegates this call to its current State object
(EmptyState). The feedChar method in this object implements the State transition from Empty to
Collect. When it is executed it changes the current State to CollectState in the Context.

3 Issues in Implementing FSMs
We have studied ways of implementing FSMs in OO languages and identified three issues that we
believe should be addressed:
• Evolution of FSM implementations. We found that the structure of a FSM tends to change over

time and that implementing those changes is difficult using existing FSM implementation meth-
ods.

• FSM instantiation. Often a FSM is used more than once in a system. To save resources, techniques
can be applied to prevent unnecessary duplication of objects.

• Data management. Transitions have side effects (actions) that change data in the system. This data
has to be available for all the transitions in the FSM. In other words the variables that store the data
have to be global. This poses maintenance issues.

In the following sections these issues are discussed in more detail.

3.1 FSM Evolution
Like all software, finite State machine implementations are subject to change. Changes are typically
done as maintenance to a system. In this section, we discuss several changes for a FSM and the
impact that these changes have on different implementations of a FSM.
• Adding states. This usually also means adding/changing transitions.
• Removing states. This affects all the transitions to and from the state.
• Changing states. Changing a State can mean changing the actions associated with State entry and

State exit.
• Adding events. This usually happens in combination with other changes such as adding transitions

and states
• Adding transitions. When adding transitions, it is possible that code should be reused (for instance

entry/exit actions)
• Removing transitions. This does not affect any states or other transitions.
• Changing transitions. Changing a transition can mean changing the source or target state; the

event that triggers the transition or the action that takes place when the transition is executed.
These are all typical modifications that happen in the lifecycle of a FSM. Ideally an implementation
of a FSM should make it very easy to incorporate these modifications. Unfortunately, this is not the
case for the procedural style of implementing nor the State pattern. To illustrate FSM-evolution we
changed our running example in the following way:
• We added a new State called Checking
• We changed the transition from Collect to Collect in a transition from Collect to Checking
• We added a transition from Checking to Collect. This also introduced a new event: notFull.
• We changed the transition from Collect to Full in a transition from Checking to Full
The resulting FSM is shown in figure 3. All these changes capture most of the typical maintenance
actions that can be performed on FSM implementation.

3.1.1 Procedural Approach
In a system implemented as described in 2.1, the changes mentioned above would be done as follows.
First a new case for the Checking State would be added in the outer case statement. For this case, a

5

new case statement is inserted to select the correct behavior for the events (excluding the new notFull
event, we do that later). Then we have to find the feedChar code for the Collect State and change it so
that it sets Checking as the new State after the transition. Then we can add a new transition from
Checking to Collect. Since this introduces a new event, we will have to change all the inner case
statements to support the new event. Finally, the code for the transition from Collect to Full must be
changed to set Checking as the new state.
The following aspects of the source code were changed:
• A new case was inserted in the outer case statement.
• A new inner case statement was created for that case.
• All the inner case statements were changed to support a new event.
• The code for the feedChar event in the Collect case was changed.
• The code for the EOL event in the Collect case was changed.
As can be seen in this example, even a simple change such as adding a State to the State machine
results in a lot of changes in the code. One can imagine that more complex changes to FSMs that are
much larger than our example, are even harder to manage because that would require a lot of changes
to the source code.
Problem. A lot of code has to be changed/added to do these simple changes. This makes it hard to do
any maintenance activities. Also a lot of code is copied between the different cases. If there is a bug
in one of the cases all its copies will have to be fixed too.
Cause. There is no mechanism to share code other than putting behavior in procedures. By using the
case statements all events are considered for every State (even the ones that won’t occur like EOL in
the empty state). This causes a lot of dead code (code that will not be executed). Finally, the case
statements also cause the code to be complex.

3.1.2 The State Pattern
The implementation of WrapAText using the State pattern (figure 2) is a lot easier to understand. To
do the changes mentioned above the following steps are necessary: First a new subclass of WrapA-
TextState needs to be created for the new State (CheckingState). The new CheckingState class inher-
its all the event methods from its superclass. Next the CollectState’s feedChar method needs to be
changed to set the State to CheckingState after it finishes.
To change the source State of the transition between Collect and Full, the contents of the EOL
method in CollectState needs to be moved to the EOL method in CheckingState. To create the new
transition from Checking to Collect a new method needs to be added to WrapATextState: notFull().
This method can have an empty body in that State (or whatever is applicable to indicate that the
method should not be called in that state). The new method is automatically inherited by all sub-
classes. To let the method perform the transition its behavior will have to be overruled in the Check-
ingState class. The new method also has to be added to the Context class (making sure it delegates to
the current state).
The following things had to be changed in the source code change the FSM:
• A new class was created

Empty Collect Full
feedChar

feedChar

EOL

release

Checking

notFull

FIGURE 3. The changed WrapAText FSM

6

• Methods in the CollectState were changed
• A method was added to the WrapATextState superclass
• The State context needs to be changed to support the new event
Problem. Code for a transition can be scattered vertically in the class hierarchy. This makes mainte-
nance of transitions difficult since multiple classes are affected by the changes. Another problem is
that methods need to be edited to change the target state. Editing the source State is even more diffi-
cult since it requires that methods are moved to another State class. Several classes need to be edited
to add an event to the FSM. First of all the Context needs to be edited to support the new event. Sec-
ond, the State super class needs to be edited to support the new event. Finally, in some State sub-
classes behavior for transitions triggered by the new event must be added.
Cause. We believe that the main cause for these problems is that the State pattern does not offer first-
class representations for all the FSM concepts (also see section 2). Of all FSM concepts, the only
concept explicitly represented in the State pattern is the State. The remainder of the concepts are
implemented as methods in the State classes (i.e. implicitly). Input events are represented as method
headers, output events as method bodies. Entry and exit actions are not represented but can be repre-
sented as separate methods in the State class. The responsibility for calling these methods would be
in the context where each method that delegates to the current State would also have to call the entry
and exit methods. Since this requires some discipline of the developer it will probably not be done
correctly.
Since actions are represented as methods in State classes, they are hard to reuse in other states. By
putting states in a State class-hierarchy, it is possible to let related states share output events by put-
ting them in a common superclass. But this way, actions are still tied to the State machine. It is very
hard to use the actions in a different FSM (with different states). The other FSM concepts (input
events, transitions) are represented implicitly. Input events are simulated by letting the FSM context
call methods in the current State object. Transitions are executed by letting the involved methods
change the current State after they are finished. The disadvantage of not having explicit representa-
tions of FSM concepts is that it makes translation between a FSM design and its implementation
much more complex. Consequently, when the FSM design changes it is more difficult to synchronize
the implementation with the design.

3.2 FSM Instantiation
Sometimes it is necessary to have multiple instances of the same FSM running in a system. In the
TCP protocol, for example, up to approximately 30000 connections can exist on one system (one for
each port). Each of these connections has to be represented by its own FSM. The structure of the
FSM is exactly the same for all those connections. The only unique parts for each FSM instance are
the current State of each connection and the value of the variables in the context of the connection’s
FSM. It would be inefficient to just clone the entire State machine (all the State objects), each time a
connection is opened. The number of objects would explode. Suppose the TCP FSM has 25 states,
with 30.000 active connections the system would have 30.000 X 25 = 615.000 objects. The memory
usage of such a system would be unacceptable.
To contrast the memory usage: a system implemented in a procedural language can implement this as
a module with a case statement. This module is loaded into memory only once and all connections
share this implementation. The FSM specific data is passed in the form of parameters. Probably some
sort of struct can be used to put the FSM specific data in.
Also, a system where the FSM is duplicated does not perform very well because object creation is an
expensive operation. In the TCP example, creating a connection requires the creation of approxi-
mately 25 objects (states, transitions), each with their own constructor. To solve this problem a mech-
anism is needed to use FSM’s without duplicating all the State objects. The State pattern does not
support this directly. This feature can be added, however, by combining the State pattern with the
Flyweight pattern [5]. The Flyweight pattern allows objects to be shared between multiple contexts.
This prevents that these objects have to be created more than once. To do this, all context specific
data has to be removed from the shared objects’ classes. We will use the term FSM-instantiation for

7

the process of creating a context for a FSM. As a consequence, a context can also be called a FSM
instance. Multiple instances of a FSM can exist in a system.

3.3 Managing Data in a FSM
Another issue in the implementation of FSMs is data storage. The actions in the transitions of a State
machine perform operations on data in the system. These operations change and add variables in the
context. If the system has to support FSM instantiation, as described in the previous section, the data
has to be separated from the transitions, since this allows each instance to have its own data but share
the transitions with the other instances.

3.3.1 Procedural Approach
In the procedural approach this is not so much an issue. Since there are no objects in a procedural lan-
guage, the data is simply stored in some sort of data structure. Each instance simply consists of a few
of those data structures.

3.3.2 State Pattern
In the State pattern, however, this is an issue. The natural place to store data in the State pattern would
either be a State class or the context. The disadvantage of storing data in the State objects is that the
data is only accessible if the State is also the current state. In other words: after a State change the
data becomes inaccessible until the State is set as the current State again. Also this requires that each
instance has its own State objects (which prevents effective FSM instantiation). Storing the data in
the Context class solves both problems and makes it possible to use the Flyweight pattern for the
State classes1. Effectively the only class that needs to be instantiated is the Context class. If this solu-
tion is used, all data is stored in class variables of the Context class. Storing data in a central place
generally is not a good idea in OO programming.
Yet, it is the only way to make sure all transitions in the FSM have access to the same data. So this
approach has two disadvantages: It forces the central storage of data and to create a FSM one has to
create a subclass of Context (to add all the variables). This makes maintenance hard. In addition, it
makes reuse hard, because the methods in State classes are dependent on the Context class and cannot
be reused with a different Context class (a different FSM for instance).

3.4 Summary
There are several problems with the procedural way of implementing FSMs:
• Maintenance of FSM implementations is hard because large case/if statements are needed to

implement it. This makes the code very complex and often requires editing in multiple places,
even for simple changes.

• The only way to reuse code is to copy it. Even if the code is placed in a separate procedure the pro-
cedure call still needs to be copied. It also makes the implementation more complex.

These problems can be partly solved by using the State pattern. This however also introduces a num-
ber of other problems:
• Though the code is more structured, the use of inheritance causes the code for transitions to be

scattered throughout the State class hierarchy. This makes maintenance of those transitions hard.
• Changing target/source states of a transition requires changing or even moving methods to other

classes.
• To add events to the FSM several classes need to be edited.
• There is no convenient way to let transitions share data.

4 Novel Approach to FSM Implementation
Several causes can be found for the problems with the State pattern mentioned in section 3:

1. The Flyweight pattern [5] can be used to share objects. It is useful if it is unfeasible to instantiate a class each time a object of that
class is needed. The Flyweight pattern is especially applicable if the class does not have any data that needs to be shared.

8

• The State pattern does not provide explicit representations for all the FSM concepts. This makes
maintenance hard because it is not obvious how to translate a design change in the FSM to the
implementation and a design-change may result in multiple implementation elements being edited.

• The State pattern is not blackbox. Building a protocol requires developers to extend classes rather
than to configure them. To do so, code needs to be edited and extended rather than composed from
existing components.

• Implementations are complex because the translation from design to implementation causes transi-
tions and events to be scattered over multiple classes and methods.

• The State pattern prevents reuse of behavior by integrating FSM concepts in a single class. The
State classes in the State pattern host a state, transitions from that State and events (in the form of
method signatures). This makes reuse of either of these concepts independent of the others hard
because they are tied together. The inheritance hierarchy for the State classes complicates things
further because transitions (and events) can be scattered throughout the hierarchy.

Most of these causes seem to point at the lack of structure in the State pattern (structure that exists at
the design level). This lack of structures causes developers to put things together in one method or
class that should rather be implemented separately. The solution we will present in this section will
address the problems by providing more structure at the implementation level.

4.1 Conceptual Design
To address the issues mentioned in above we modeled the FSM concepts as objects. We have created
a design that also deals with FSM evolution and instantiation. The implication of this is that most of
the objects in the design must be sharable between FSM instances. This also implies that those
objects cannot store any context specific data. An additional goal for the framework was to allow
blackbox configuration2. The rationale behind this was that it should be possible to separate a FSM’s
structure from its behavior (i.e. transition actions or State entry/exit actions). In figure 4 the concep-
tual model of our FSM framework is presented. The rounded boxes represent the different compo-
nents in the framework. The solid arrows indicate association relations between the components and
the dashed arrows indicate how the components use each other.
Similar to the State pattern, there is a Context component that has a reference to the current state. The
latter is represented as a State object (rather a State subclass in the State pattern). The key concept in
the framework is a transition. The transition object has a reference to the target State and an Action
object. For the latter, the Command pattern [5] is used. This makes it possible to reuse commands in
multiple places in the framework. A State is associated with a set of transitions. The FSM responds to

2. Blackbox frameworks provide components in addition to the white box framework (abstract classes + interfaces). Components pro-
vide a convenient way to use the framework. Relations between blackbox components can be established dynamically.

aContext

aState aStateaTransition

anEvent

anAction

sends anEvent

triggers

has a
is associated with

has a has a

has a
executes

sets state/uses context
FIGURE 4. The FSM Framework’s components.

9

events that are sent to the context. The context passes the events on to the current state. The State
maintains a list of transition, event pairs. When an event is received the corresponding transition is
located and then executed (triggered). The transition object simply executes the associated action and
then sets the target State as the current State in the context.
To enable FSM instantiation in an efficient way, no other objects than the context may be duplicated.
All the State objects, event objects, transition objects and action objects are created only once. The
implication of this is that none of those objects can store any context specific data (because they are
shared among multiple contexts). When, however, an action object is executed (usually as the result
of a transition being triggered), context specific data may be needed. The only object that can provide
access to this data is the context. Since all events are dispatched to the current State by the context, a
reference to the context can be passed along. The State in its turn, passes the reference to the transi-
tion that is triggered. The transition finally gives the reference to the action object. This way the
action object can have access to context specific data without being context specific itself.
A special mechanism is used to store and retrieve data from the context. Normally, the context class
would have to be sub-classed to contain the variables needed by the actions in the FSM. This effec-
tively ties those actions to the context class, which prevents reuse of those actions in other FSMs
since this makes the context subclasses FSM specific. To resolve this issue we turned the context into
a object repository. Actions can put and get variables in the context. Actions can share variables by
referring to them under the same name. This way the variables do not have to be part of the context
class. Initialization of the variables can be handled by a special action object (init) that is executed
when a new context object is created. Action objects can also be used to model State entry and exit
actions.

4.2 An Implementation
We have implemented the design described in the previous section as a framework [8] in Java. We
have used the framework to implement the WrapAText example and to perform performance assess-
ments (also see section 6). The core framework consists of only four classes and one interface. In fig-
ure 5, a class diagram is shown for the framework’s core classes. We’ll shortly describe the classes
here:
• State. This class models the states in the FSM. Each State has a name that can be set as a property

in this class. State also provides a method to associate events with transitions. It also provides a
dispatch method to trigger transitions for incoming events. The dispatch method (after finding the
right transition) first executes the state-exit action. Subsequently the transition is executed and then
the target State in the transition is set as the current State in the context. Finally the state-entry
method for the target State is executed.

• FSMContext. This class maintains a reference to the current State (is generally changed by execut-
ing transitions) and functions as an object repository for actions. Actions can store objects in the
context using the put method. The objects can later be retrieved using the get method. Whenever a

FSMContext
currentState : State
in it : FSMAction

dispatch(String eventName, Object o)
get(String name) : Object
put(String name, Object o)

Trans ition
target : State
action : FSMAction

execute(FSMContext c, Object o)

FSMAction

execute(FSMContext c, Object o)

<<Interface>>
11 +executestransitionAction

1

+exutes upon fsm instrantiation

1

init action

State
entryAction : FSMAction
exitAction : FSMAction
name : String

dispatch(FSMContext fsmc, String eventName, Object o)
addTransition(Transition t, String eventName)

1

+to

1

target state

*

+has

*

currentState

2

+executes

2
entry & exit action

FSM

createFSMInstance() : FSMContext

**

FIGURE 5. Class diagram for the FSM Framework

10

new FSMContext object is created (FSM instantiation), the init action is executed. This action can
be used to pre-define variables for the actions in the FSM.

• Transition. The transition object has only one method: execute(). This method is called by a State
when an event is dispatched that triggers the transition.

• FSM. This class functions as a central point of access to the FSM. It provides methods to add
states, events and transitions. It also provides a method to instantiate the FSM (resulting in the cre-
ation and initialization of a new FSMContext object).

• FSMAction. This interface has to be implemented by all actions in the FSM. It functions as an
implementation of the Command pattern as described in [5].

5 Our FSM Framework Configuration Tool
In [12] a typical evolution path of frameworks is described. According to this paper, frameworks start
as white box frameworks (just abstract classes and interfaces). Gradually components are added and
the framework evolves into a black box framework. One of the later steps in this evolution path is the
creation of configuration tools. Our FSM Framework consists of components thus creating the possi-
bility of making such a configuration tool. A tool significantly eases the use of our framework. since
developers only have to work with the tool instead of complex source code. As a proof of concept, we
have built a tool that takes a FSM specification in the form of an XML document [17] as an input.
XML is suitable for modeling hierarchical data, such as a FSM. The wide support for this language
makes it easier to built graphical tools that work on the XML specification of a FSM.

5.1 FSMs in XML
In figure 6 an example of an XML file is given that can be used to create a FSM. In this file the Wra-
pAText FSM in figure 1 is specified. Several tags like <states> and <transition> are used. The
structure of the file is very straightforward. We did not create a DTD3 for FSMs but that would be
necessary if the tool would be used in a wider context.

3. Document Type Definition. DTDs can be used to validate XML document (that is check whether the structure of the document is
valid against the rules specified in the DTD).

<fsm firststate="Empty" initaction="initAction.ser">
 <states>
 <State name="Empty"/>
 <State name="Collect" initaction="collectEntry.ser"/>
 <State name="Full" initaction="fullEntry.ser"/>
 </states>
 <events>
 <event name="feedChar"/>
 <event name="EOL"/>
 <event name="release"/>
 </events>
 <transitions>
 <transition sourcestate="Empty"
 targetstate="Collect"
 event="feedChar"
 action="processChar.ser"/>
 <transition sourcestate="Collect"
 targetstate="Collect"
 event="feedChar"
 action="processChar.ser"/>
 <transition sourcestate="Collect"
 targetstate="Full"
 event="EOL"
 action="skip.ser"/>
 <transition sourcestate="Full"
 targetstate="Empty"
 event="release"
 action="reset.ser"/>
 </transitions>
</fsm>

FIGURE 6. WrapAText specified in XML

11

A problem in specifying FSMs using XML is that FSMActions cannot be modeled this way. The
FSMAction interface is the only whitebox element in our framework and as such is not suitable for
configuration by a tool. To resolve this issue we developed a mechanism where FSMAction compo-
nents are instantiated, configured and saved to a file using serialization. The saved files can be
referred to from the XML file. When the framework is configured the FSMAction component files
are deserialized by the configuration tool and plugged into the FSM framework. Alternatively, we
could have used the dynamic class-loading feature of Java. This would, however, prevent the config-
uration of any parameters the actions may contain. The dynamic abilities of Java are essential in this
tool since a static language such as C++ does not have a mechanism for serialization (though it is pos-
sible to simulate it to some extent), nor does it have a mechanism for loading classes dynamically.

5.2 Configuring and Instantiating FSMs
The FSMGenerator, as our tool is called, uses the IBM xml4j parser [18]. It parses a document like
the example in figure 6. After the document is parsed, the parse tree can be accessed using the Docu-
ment Object Model API that is standardized by the World Wide Web Consortium (W3C) [19]. Using
this interface, the tool traverses the object hierarchy and configures the components in our frame-
work. The generator first retrieves all the State tags and uses the FSM class to create a State for each
of them. Then it proceeds with the event tags and after that the transition tags. After it is finished the
tool gives back a FSM object that contains the FSM as specified in the XML document. The parser
also has the ability to process DTD’s so if a DTD was developed for XML code that specifies a FSM,
the parser would automatically check whether an input file is correct. The DOM API can also be used
to create XML. This feature would be useful if a graphical tool were developed. Through the DOM
API, such an application can create XML files. The FSM object can be used to create FSM instances.

5.3 WrapAText in the FSM Framework
Describing the FSM in XML is pretty straightforward, as can be seen in figure 6. Most of the imple-
mentation effort is required for implementing the FSMAction objects. Once that is done, the FSM
can be generated (at run-time) and used. Five serialized FSMAction objects are pre-defined. Since
the FSM framework allows the use of entry and exit actions in states, they are used those where
appropiate. The processChar action is used in two transitions. This is where most of the work is done.
To illustrate the implementation of a typical FSMAction, the source code for one of the actions is
shown here:

public class ProcessChar implements FSMAction, java.io.Serializable {
 public ProcessChar() {
 }

 public void execute(FSMContext fsmc, Object o) {
 Counter c = (Counter)fsmc.get("counter");
 c.increment();
 StringBuffer line = (StringBuffer)fsmc.get("line");
 line.append("" + o);
 }
}

The FSMAction uses the FSMContext to retrieve two variables (a counter and the line of text that is
presently created) that are retrieved from the context. Also the Serializable interface is implemented
to indicate that this class can be serialized.

6 Assessment
In section 3, we evaluated the implementation of finite State machines using the procedural approach
and the State pattern. This evaluation revealed a number of problems, based on which we developed
an alternative approach. In this section we evaluate our approach with respect to maintenance and
performance.

6.1 Maintenance
The same changes we applied in section 3.1 can be applied to the implementation of WrapAText in
the FSM framework. We’ll use the implementation as described in section 5.3 to apply the changes

12

to. All of the changes are restricted to editing the XML document since the behavior as defined in the
FSMActions remains more or less the same.
To add the Checking state, we add a line to the XML file:

< State name="Checking" />
Then we change the target State of the Collect to Collect transition by changing the definition in the
XML file. We do the same for the Collect to Full transition. The new lines look like this:

< transition sourcestate="Collect" targetstate="Checking" event="feedChar"
 action="processChar.ser" />
< transition sourcestate="Checking" targetstate="Full" event="EOL" action="skip.ser" />

Then we add the transition from Checking to Collect:
 <transition sourcestate="Checking" targetstate="Collect" event="notFull" action="skip.ser" />

Finally the entry action of Collect is moved to the Checking State by setting the initaction property in
Checking and removing that property in Collect. Changing a FSM implemented in this style does not
require any source editing (except for the XML file of course) unless new/different behavior is
needed. In that case the changes are restricted to creating/editing FSMActions.

6.2 Performance
To compare the performance of the new approach in implementing FSMs to a traditional approach
using the State pattern, we performed a test4. The performance measurements showed that the FSM
Framework was almost as fast as the State pattern for larger State machines but there is some over-
head. The more computation is performed in the actions on the transitions that are executed, the
smaller the performance gap.
To do the performance measurements, the WrapAText FSM implementation was used. This is a very
easy case to implement since most of the actions are quite trivial. Some global data has to be main-
tained: a String to collect received characters and a counter to count the characters. Two implementa-
tions of this FSM were created: one using the State Pattern and one using our FSM Framework
presented earlier.
Several different measurements were performed. First, we measured the FSM as it was implemented.
This measurement showed that the program spent most of its time switching State since the actions
on the transitions are rather trivial. To make the situation more realistic loops were inserted into the
transition actions to make sure the computation in the transitions actually took some time (more real-
istic) and the measurements were performed again.
Four different measurements (see figure 7) were done:
• Measuring how long it takes to process 10,000,000 characters (I)
• The same as (I) but now with a 100 cycle for loop inserted in the feedChar code. Each time a char-

acter is processed, the loop is executed (II)
• The same as (II) with a 1000 cycle loop (III)
• The same as (II) with a 10000 cycle loop (IV)
The loop ensures that processing a character would take some time. This simulates a real world situa-
tion where a transition takes some time to execute.
In figure 7, a diagram our measurements is shown. Each case was tested for both the State pattern and
the FSM framework. For each test, the time to process the characters was measured (in seconds). The
bars in the graph illustrate the relative performance difference. Not surprisingly the performance gap
decreases if the amount of time spent in the actions on a transition increases. The numbers show that
a State transition in the FSM Framework (exclusive action) is about twice as expensive as in the State
Pattern implementation for simple transitions. The situation becomes better if the transitions become
more complex (and less trivial). The reason for this is that the more complex the transitions are the
smaller the relative overhead of changing State is. This is illustrated by case IV where the perfor-
mance difference is only 13%.
In general one could say that the State pattern is more efficient if a lot of small transitions take place
in a FSM. The performance difference becomes negligible if the actions on the transitions become

4. We did not test the procedural solution because we expected it to be faster than both the State pattern and the FSM framework,
whereas its maintainability problems virtually prohibit its use in evolving systems..

13

more computational intensive. Consequently, for larger systems, the performance difference is negli-
gible. Moreover since this is only a toy framework, the performance gap could be decreased further
by optimizing the implementation of our framework. The main reason why State transitions take
longer to execute is that the transition object has to be looked up in a hashtable object each time it is
executed. The hashtable object maps event names to transitions.

7 Related Work
State Machines in General. FSM have been used as a way to model object-oriented systems. Important
work in this context is that of Harel’s Statecharts [7] and ObjChart [6]. ObjChart is a visual formal-
ism for modeling a system of concurrently interacting objects and the relations between these objects.
The FSMs that this formalism delivers are too fine-grained (single classes are modeled as a FSM) to
implement using our FSM Framework. Rather our framework should be used for more coarse-
grained systems where the complex structure is captured by a FSM and the details of the behavior of
this machine are implemented as action objects. Most of these approaches seem to focus on modeling
individual objects as FSMs rather than larger systems.
FSM Implementation. In the GoF book [5] the State pattern is introduced. In [4], Dyson and Anderson
elaborate on this pattern. One of the things they add is a pattern that helps to reduce the number of
objects in situations where a FSM is instantiated more than once (essentially by applying the fly-
weight pattern). In [11], a complex variant of the State Pattern called MOODS is introduced. In this
variant, the State class hierarchy uses multiple inheritance to model nested states as in Harel’s State-
charts [7]. In [10], the State pattern is used to model the behavior of reactive components in an event
centered architecture. Interestingly it is suggested that a event dispatcher class for the State machine
can be generated automatically.
In [13] an implementation technique is presented to reuse behavior in State machines through inherit-
ance of other State machines. The authors also present an implementation model that is in some ways
similar to the model presented in this paper. Our approach differs from theirs in that it factors out
behavior (in the form of actions). The remaining FSM is more flexible (it can be changed on the fly if
needed). Our approach establishes reuse using a high level specification language for the State
machine and by using action components, that are in principle independent of the FSM. Bosch [3]
uses a different approach to mix FSMs with the object-orientation paradigm. Rather than translating a
FSM to a OO implementation a extended OO language that incorporates states as first class entities is
used.
Yet another way of implementing FSMs in an object-oriented way is presented in [1]. The implemen-
tation modeled there resembles the State pattern but is a slightly more explicit in defining events and
transitions. It still suffers from the problem caused by actions being integrated with the State classes.
Also data management and FSM instantiation are not dealt with. The author also recognizes the need

0%

50%

100%

150%

200%

250%

FSM Framework 194% 193% 157% 113%

State Pattern 100% 100% 100% 100%

I II III IV

FIGURE 7. Performance measurements (measurements in seconds)

14

for a mapping between design (a FSM) and implementation like there is for class diagrams. This need
is also recognized in [2], where several issues in implementing FSMs are discussed.
Event Dispatching. Event dispatching is rudimentary in the current version of our framework at this
moment. A better approach can be found [14], where the Reactor pattern is introduced. An important
advantage of the way events are modeled in our framework, however, is that they are blackbox com-
ponents. The Reactor pattern would require one to make subclasses of some State class. A different
approach would be to provide a number of default events as presented in [9], where the author classi-
fies events in different groups.
Frameworks. A great introduction to frameworks can be found in [8]. In this thesis several issues sur-
rounding object-oriented frameworks are discussed. A pattern language for developing frameworks
can be found in [12]. One of the patterns that is discussed in this paper is the Black box Framework
pattern which we used while creating our framework. Another pattern in this article is called Lan-
guage Tools applies to our configuration tool.

8 Conclusion
The existing State pattern does not provide explicit representations for all the FSM concepts. Pro-
grams that use it are complex and it cannot be used in a blackbox way. This makes maintenance hard
because it is not obvious how to apply a design change to the implementation. Also support for FSM
instantiation and data management is not present by default. Our solution however, provides abstrac-
tions for all of the FSM concepts. There is a State class, an Event class (input events), a Transition
class, a FSMAction interface (output events). Furthermore, each State has state-entry and state-exit
actions. In addition to that it supports FSM instantiation and provides a solution for data management
that allows to decouple behavior from the FSM structure.The latter leads to cross FSM, reusable
behavior.
The State pattern is not blackbox and requires source code to be written in order to apply it. Building
a FSM requires the developer to extend classes rather than to configure them. Alternatively, our FSM
Framework5 can be configured (with a tool if needed) in a blackbox way. Only FSMActions need to
be implemented in our framework. The resulting FSMAction objects can be reused in other FSMs.
This opens the possibility to make a FSMAction component library.
Our approach has several advantages over implementing FSMs using the State pattern, including:
• States are no longer created by inheritance but by configuration. The same is the case for events.

Also, the context can be represented by a single component.
• Inheritance is only applied where it is useful: extending behavior. Related actions can share behav-

ior through inheritance. Also actions can delegate to other actions (removing the need for events
supporting more than one action).

• States, actions, events and transitions now have explicit representations. This makes the mapping
between a FSM design and implementation more direct and consequently easier to use. A tool
could create all the event, State and context objects by simply configuring them. All that would be
required from the user would be implementing the actions.

• It is possible to configure FSMs in a blackbox way. This can be automated by using a tool such as
our FSMGenerator.

There are also some disadvantages compared to the original State pattern:
• The context repository object possibly causes a performance penalty compared to directly access-

ing variables, since variables need to be obtained from a repository. However a pretty efficient
hashtable implementation is used. The measurements we performed showed that the performance
gap with the State pattern decreases as the transitions become more complicated.

• It could be difficult to keep track of what’s going on in the context. The context is simply a large
repository of objects. All actions in the FSM read and write to those objects (and possibly add new
ones). This can, however, be solved by providing tracing and debugging tools.

5. To receive a copy of our framework, documentation and some examples, contact the first author.

15

8.1 Future work
Our FSM framework can be extended in many ways. An obvious extension is to add conditional tran-
sitions. Conditional transitions are used to specify transitions that only occur if the trigger event
occurs and the condition holds true. Though this clearly is a powerful concept, it is hard to implement
it in a OO way. A possibility could be to use the Command pattern again to create condition objects
with a boolean method but that would tie the conditions to the implementation thus they can’t be
specified at the XML level. To solve this problem a large number of standard conditions could be
provided (in the form of components).
A next step is to extend our FSM framework to support Statechart-like FSMs. Statecharts are normal
FSMs + nesting + orthogonality + broadcasting events [7]. These extensions would allow developers
to specify Statecharts in our configuration tool, which then maps the statecharts to regular FSMs
automatically. The extensions require a more complex dispatching algoritm for events. Such an
extension could be used to make the State diagrams in OO modeling methods such as UML and
OMT executable.
Though performance is already quite acceptable, much of our implementation of the framework can
be optimized. The bottlenecks seem to be the event dispatching mechanism and the variable lookup
in the context. Our current implementation uses hashtables to implement these. By replacing the
hashtable solution with a faster implementation, a significant performance increase is likely.

9 References
[1] M. Ackroyd, “Object-oriented design of a finite State machine“, Journal of Object Oriented Programming, June

1995.
[2] F. Barbier, Henri Briand, B. Dano, S. Rideau, “The executability of Object Oriented Finite State Machines“,

Journal of Object Oriented Programming, July/August 1998.
[3] J. Bosch, “Abstracting Object State“, Object Oriented Systems, June 1995.
[4] P. Dyson, B. Anderson, “State Patterns“, Pattern Languages of Programming Design 3, edited by Martin/Riehle/

Buschmann Addison Wesley 1998
[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns - Elements of Reusable Object Oriented

software”, Addison Wesley, 1995.
[6] D. Gangopadhyay, Subrata Mitra, “ObjChart: Tangible Specification of Reactive Object Bahvior“, Proceedings of

ECOOP ‘93, p432-457 July 1993.
[7] D. Harel, “Statecharts: a Visual Approach to Complex Systems(revised)“, report CS86-02 Dep. App Math’s

Weizman Inst. Science Rehovot Israel, March 1986.
[8] M. Mattson, “Object-Oriented Frameworks – A Survey of Methodological Issues”, Department of computer

science, Lund University, 1996.
[9] J. J. Odell, “Events and their specification“, Journal of Object Oriented Programming, July/August 1994.
[10] A. Ran, “Patterms of Events“, Pattern Languages of Program Design, edited by Coplien/Schmidt. Addison Wesley,

1995
[11] A. Ran, “MOODS: Models for Object-Oriented Design of State“, Pattern Languages of Program Design 2, edited

by Vlissides/Coplien/Kerth. Addison Wesley, 1996
[12] D. Roberts, R Johnson, "Patterns for evolving frameworks", Pattern Languages of Program Design 3 (p471-p486),

Addison-Wesley, 1998.
[13] A. Sane, R. Campbell, “Object Oriented State Machines: Subclassing Composition, Delegation and Genericity“,

Proceedings of OOPSLA ‘95 p17-32, 1995.
[14] D. C. Schmidt, “Reactor: An Object Behavior Pattern for Concurrent Event Dmultiplexing and Event Handler

Dispatching“, in Coplien, Schmidt, “Pattern Languages of Program Design”, Addison Wesley 1995, p529-546.
[15] J. M. Zweig, R. E. Johnson, “The Conduit: a Communication Abstraction in C++“, Usenx C++ Conference 1990.
[16] “Transmission Control Protocol – DARPA Internet Program Protocol Specification”, RFC 793, September 1981.
[17] http://www.w3c.org/XML/index.html.
[18] http://www.alphaworks.ibm.com/Home/index.html
[19] http://www.w3c.org/index.html.

