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Abstract. Design erosion is a common problem in software engineering. We have found that invariably,
no matter how ambitious the intentions of the designers were, software designs tend to erode over time
to the point that redesigning from scratch becomes a viable alternative compared to prolonging the life
of the existing design. In this paper we illustrate how design erosion works by presenting the evolution
of the design of a small software system. In our analysis of this example we show how design decisions
accumalate and become invalid because of new requirements. Also it is argued that even an optimal
strategy for designing the system (i.e. no compromises with respect to e.g. cost are made) does not lead
to an optimal design because of unforseen requirement changes that invalidate design decisions that
once were optimal.

1 Introduction

With the ever increasing size and complexity of software, the weaknesses of existing software development
methods and tools are beginning to show. This is particularly true when it comes to maintaining the software.
As early as 1968 the software crisis was identified during a Nato workshop [Naur & Randell 1969]. Since that
moment, many approaches have been suggested to solving the software crisis, many of which are still applied
today. In this paper we intend to illustrate that despite thirthy years of research and despite the many suggested
approaches it is still inevitable that a software system eventually erodes under pressure of the ever changing re-
quirements.

Recent examples of approaches are the architecture development method discussed in [Bosch 2000], the
software development method Extreme Programming [Beck 1999] and many others. However we have rea-
sons to belief that such approaches still do not fully address the issues identified in 1968. The example we
present in this paper serves both as an illustration of design erosion and related problems and as a starting point
for future research. Further more we present two strategies for incorporating change requests: the optimal
architecture strategy and the minimal effort strategy.

1.1 Industrial Examples

Design erosion is quite common and the diagnosis of its occurence is often used as a motivation for
redeveloping systems from scratch. In most cases such redevelopment requires a massive effort. An example
of a project where this happened is the Mozilla webbrowser. Three years ago, Netscape was experiencing
fierce competition from Microsoft’s Internet Explorer. They decided to release their own browser as open
source and started working on transforming it into the next generation browser. After half a year of
development the developers of the open source Netscape came to the conclusion that the original netscape
source was eroded beyond repair. They took a major decision and started from scratch. Now, more than two
years later the Mozilla project is still working on this browser. An enormous amount of code has been released
and some of it has been retired yet again (despite it being written from scratch). An example of this is the
caching component which was recently replaced by a completely new version because of less than optimal
design decisions in the original version. Apperently during the two years of redevelopment, requirements had
changed sufficiently to retire a part of the system before the system was even finished.

A second example of software erosion we have encountered [Bosch 1999a][Svahnberg & Bosch 1999] is
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the Axis case. Axis AB is a Swedish company that produces network devices that replace PC’s as a means to
offer network connectivity for common PC peripherals like printers, scanners, cdroms, zip drives, etc. In the
early days of this company, this company only had a printer server, however, support for other devices was
added over time. At some point the developers realized that in order to support new types of devices, a radical
restructuring of their software was needed. Rather than patching up the existing software it was decided to
build a new architecture. After two years of development (while simultaneously maintaining the old software),
they were ready to release products based on the new software. When we recently visited Axis we found out
that this new architecture (after a few years of succesful use) was slowly being replaced by a third generation
of software (they were migrating from their propietary OS to an embedded linux version).

A third example is the latest version of the linux kernel. Like Mozilla, this product is developed as an open
source project. One of the reasons it took nearly two years to develop kernel 2.4 (which was released recently)
after the previous stable release (version 2.2, odd version numbers like 2.3 are considered to be development
versions) is that much of the old 2.2 code needed massive restructuring in order to incorporate the new require-
ments. By redesigning large parts of the old kernel, the performance was enhanced and new requirements
could be met. A similar effort can be expected for the next release (i.e. 2.6).

In these three examples, the redevelopment of the software can be considered a success. However, consid-
ering the effort needed to do so, it can easily be imagined that some companies are less fortunate in identifying
the signs of design erosion early enough to be able to take such action. Redeveloping software (also referred to
as the revolutionary approach), is a very expensive and lengthy procedure and failing to see it is necessary can
be fatal to a software producing company.

A second issue that we have observed is that in all three cases, the redevelopment of the software was only
partly succesful. Mozilla has already seen some of its components rewritten, Axis is already working on its
third generation of software and the linux development can be characterized as a continuous effort to perfect
the system, often resulting in large parts being replaced by new code.

1.2 Problems

Based on the industrial cases that we have studied (e.g. [Bengtsson & Bosch 1998] and [Bosch et al. 1999b])
and the above examples, we have identified that design erosion is caused by a number of problems associated
with the way software is commonly developed.
• Traceability of design decisions. The notations commonly used to create software lack the expressiveness

needed to express concepts used during design. Consequently, design decisions are difficult to track and
reconstruct from the system.

• Increasing maintenance cost. During evolution maintenance tasks become increasingly effort consuming
due to the fact that the complexity of the system keeps growing. This may cause developers to take sub-
optimal design decisions either because they do not understand the architecture or because a more optimal
decision would be too effort demanding.

• Accumulation of design decisions. Design decisions accumulate and interact in such a way that whenever
a decision needs to be revised, other design decisions may need to be reconsidered as well. A consequence
of this problem is that if circumstances change, developers may have to work with a system that is no
longer optimal for the requirements and that cannot be fixed cheaply.

• Iterative methods. The aim of the design phase is to create a design that can accommodate expected future
change requests. This conflicts with the iterative nature of many development methods (extreme program-
ming, rapid prototyping, etc.) since these methodologies typically incorporate new requirements that may
have an architectural impact, during development whereas a proper design requires knowledge about these
requirements in advance.
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1.3 Optimal vs. minimal approach to Software Development

Assuming an iterative development method, we can distinguish two stereotypical strategies for incorporating
change requests into a software system:
• Minimal effort strategy. Incorporate the change in the next iteration of the development while preserving

as much of the old system as possible. The advantage of this approach is the relatively low cost of each iter-
ation. However, the accumulation of design decisions in each subsequent iteration limits what is possible at
a reasonable cost in future iterations.

• Optimal design strategy. Make all the necessary changes to the software artefacts to get an optimal system
for the new set of requirements. In principle, no compromises between cost and quality are to be made. The
advantage of this approach is that the changed system is optimal for the requirements because any conflicts
with decisions in the previous version are resolved. This means that future changes can be incorporated at a
relatively low cost. However, redesigning a system can take a lot of time and generally takes a lot of effort
(see Section 1.1 for examples).

Both strategies are infeasible in general. The minimal strategy, because that causes problems for future
changes. The optimal strategy, because the cost is too high. However, we tend to look upon these strategies as
two extremes in a spectrum of approaches.

1.4 Related work

In [Perry & Wolf 1992], a distinction is made between architecture erosion and architectural drift.
Architectural erosion, according to Perry and Wolf, is the result of 'violations of the architecture'. Architectural
drift, on the other hand is the result of 'insensitivity to the architecture' (the architecturally implied rules are not
clear to the software engineers who work with it). Parnas, in his paper on software aging [Parnas 1994],
observes similar phenomena's. Although he does not explicitly talk about erosion, he does talk about aging of
software as the result of bad design decisions which in turn are the result of poorly understood systems. In
other words: erosion is caused by architectural drift. As a solution to the problem Parnas suggests that software
engineers should design for change, should pay more attention to documentation and design review processes.
He also claims that no coding should start before a proper design has been delivered.

In [Jaktman, Leaney, Liu 1999], a set of characteristics of architecture erosion is presented. Some of these
characteristics are also identified in our own case study. In their case study, Jaktman et al. aimed to gain knowl-
edge about how architecture quality can be assessed. Assessing architecture erosion is an integral part of this
assessment.

To avoid taking bad design decisions, developers can consult a growing collection of patterns (e.g. [Gamma
et al. 1995] and [Bushman 1996]). An approach to countering design erosion is refactoring [Fowler et al.
1999]. Refactoring is a process where existing source code is changed to improve the design. Fowler et al.
present a set of refactoring techniques that can be applied to a working program. Using these techniques viola-
tions of the design can be resolved. Unfortunately, some of the refactoring techniques can be labor intensive,
even with proper tool support (e.g. [Roberts, Brant, Johnson 1997]).

Yet another approach is to pursue separation of concerns. By separating concerns, the effect of changes can
be isolated. E.g. by separating the concern synchronization from the rest of the system, changes in the synchro-
nization code will not affect the rest of the system. Examples of approaches that aim to improve separation of
concerns are Aspect Oriented Programming [Kiczalez et al. 1997], Subject Oriented Programming [Harrison &
Osscher 1993] and Multi Dimensional Separation of Concerns [Tarr, Ossher, Harrison 1999].

1.5 Contributions & Remainder of the paper

In many of the suggested approaches towards (e.g. Parnas’ suggestions) solving the software crisis, it is as-
sumed that if engineers work harder and/or more efficiently and/or use better tools, the problems will disap-
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pear. We disagree with this assumption and we demonstrate in this paper that design erosion is inevitable with
the current way of developing software. Good methods only contribute by delaying the moment that a system
needs to be retired. These approaches do not address the fundamental problems that cause design erosion.
Rather than fight the symptoms we should start to address the causes.

In the remainder of this paper, we will discuss an example system (Section 2 and Section 3). The reason for
using a small example rather than an industrial case is that often companies are not in a position that enables
them to follow an optimal strategy (which is what we do in the example). In addition, industrial cases may sim-
ply be to complex for our purposes. The advantage of the example we use in this paper is that we are in control
of its development and that it is small enough to discuss in full detail. In Section 4 present an analysis of our
experiences with the example and we revisit the problems identified in this section. Finally, we conclude the
paper in Section 5.

2 The ATM Simulator

The example we present in this paper can be characterized as following a near optimal strategy for evolving a
system (we have made some compromises). In our analysis we show how the design decisions affect the
system. In Section 3 we also reflect on what would have happened if we followed the minimal strategy for
evolving the system. Economic concerns would probably have prohibited following the optimal strategy if our
system had been larger, so it is worthwhile to examine both strategies.

The example we use in this paper is a simulator of a bank machine. The functionality of an ATM (Auto-
mated Teller Machine) can be nicely expressed as a finite state machine (FSM), see Figure 1. The start state of
the FSM is wait. When in the wait state the FSM waits for a bankcard to be inserted. When a card is
inserted it is verified whether it is a valid card or not. If it’s a valid card, the pin code is asked and checked
(maximum of 3 times, after three attempts the card is destroyed), after a valid pin code has been entered, an
amount of money needs to be given to the ATM. After a valid amount has been entered, the card is ejected and
money is given to the client. Optionally, a receipt is printed. We have implemented several versions of the
ATM simulator. For each version we introduced new requirements that forced us to redesign the system.

2.1 Version 1: The State Pattern

Requirements. In the first version of the ATM Simulator we focused on getting the system to work as speci-
fied in the FSM (Figure 1). Our initial requirements were:

Figure 1 ATM FSM
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• Core Functionality. Provide a simple implementation of the ATM Simulator, based on the specification in
the FSM.

• User Interface. Provide a primitive user interface to allow users to interact with the simulator.
Initial design. The first version of the simulator is based on the State pattern, which is described in [Gamma et
al. 1995]. In Figure 2, a diagram illustrates the structure of a State pattern application in our simulator. In the
State pattern, a state machine’s states are implemented as subclasses of a State class. A Context class is respon-
sible for maintaining a reference to the current state (i.e. an instance of a subclass of State). State transitions are
implemented as methods in the State subclasses.

Consequently, the design of the first version of our simulator contains an ATMContext class responsible for
dispatching the events from the ATM FSM to the right ATMState instance (there are 12 subclasses, one for
each state). In addition, the ATMContext class also stores any variables used by the ATMState subclasses. The
reason for doing so is that these variables need to be shared between the various state classes (i.e. they are part
of the context). A consequence is that a reference to the context needs to be available when events are dis-
patched. Because of this, the ATMState class has a property context that stores a reference to the ATMCon-
text. Whenever a subclass needs to access one of the shared variables it can access them through this property.
Issues. There are a few issues that may cause maintainability problems:
• The ATMContext contains a lot of methods that do nothing else but forward the call to the current state.
• ATMState subclasses inherit empty method bodies for all events in the FSM. Consequently, each state can

process any event, even though the FSM specifies only a few per state.
• The ATMContext does not check whether a particular event is supported by the current state. It is the pro-

grammer’s responsibility to check that events are processed in the right order.

2.2 Version 2: The Flyweight Pattern

New requirements. In version 2 of the ATMSimulator, we focused on reducing the overhead of creating
objects. Each time an ATM simulator object is created, an object is created for each of the states. Recreating
these objects is a time consuming and essentially redundant action. This is especially true since the state
classes in version 1 do not store any data. The changes in this version address the following quality require-
ments:
• Memory Usage. The aim of the changes is to instantiate the state classes only once.
• Performance. By reusing the state class instances, initialization time of the simulator is reduced for subse-

quent uses after the first initialization
Changes. To allow for more than one instance of a FSM efficiently, the State pattern can be combined with the
Flyweight pattern. This is also described in [Gamma et al. 1995]. In Figure 3, the changed version of the model
in Figure 2 is displayed. The Flyweight pattern makes it possible to reuse instances of a class throughout a pro-
gram. Consequently, only one instance is needed. Because the instances are shared, any data stored in the

Figure 2 Version 1: The State pattern in the ATMSimulator
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instance is also shared. Gamma et al. distinguish between intrinsic and extrinsic object state (not to be con-
fused with a finite state machine’s states). Intrinsic object state can be shared whereas extrinsic object state has
to be provided to the Flyweight instance each time it is used. Luckily, the State objects in the ATMSimulator do
not have any data that cannot be shared between multiple instances of the simulator except for the context
property, which helps the methods in the state find the context object containing variables that are needed in
state transitions. So, little rearchitecting is needed in the state classes.

We removed the context property from the ATMState and inserted a context parameter in each event
method. In addition, we made the shared instance variables in ATMContext static. These shared variables con-
tain references to the state objects. Making these variables static causes them to be instantiated only once. This
greatly reduces the number of objects in the system (if more than one instance of FSMContext is used). With-
out this change, each instance of FSMContext would create 12 state objects.
Problems and issues. A consequence of the flyweight pattern is that the state classes cannot hold any data
(except for global data) since the instances are shared between the finite state machines. In our case, most of
the data already resided in the FSMContext class, so that was no problem. A more serious issue was that ver-
sion 1 used stdin and stdout for communication with the user. In case of multiple instances, these resources
also have to be shared. We delayed solving this issue to version 3.

2.3 Version 3: Multiple instances + new GUI

New requirements. In this version, we evolved version 2 in such a way that multiple simulators can be run in
parallel. Running multiple ATM simulators may be useful if we move to a client server architecture where mul-
tiple clients connect to a server running the simulators. The previous version already made it efficient to create
multiple simulators. However, the way user interaction was dealt with in that version made it hard to use more
than one instance. This issue is dealt with in this version. The following functional requirements are addressed
in this version:
• User Interface. The user interface in the first two versions uses the command line for user input. However,

when more than one simulator is used, a command line interface is no longer sufficient
• Parallelism. By making each simulator a thread, it is possible to run them in parallel.
Changes. To address the user interface issues in version 2, we replaced the command line interface with a
GUI. The GUI consists of multiple windows, each containing a text area for the output and a text field for the
input. Each window is associated with an FSMContext instance. The GUI is connected to the FSM using a
pipes and filters architecture. The reason we designed the system this way is that it allows us to preserve most
of the code in the previous versions. Whenever a user enters text into the text field, this string is inserted into a
pipe. The ATMSimulator can read from the pipe as if it were a regular IOStream (i.e. using readLine). Since it
was previously reading from the stdin stream in a similar fashion, few changes were needed in the system.

In addition we implemented the java.lang.Runnable interface in ATMContext. This interface makes
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Figure 3 Version 2: The Flyweight pattern in the ATMSimulator
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it possible to create a thread from an object. Implementing the runnable interface has as a consequence that a
run() method needs to be added. In the new version of ATMContext, this method only feeds new start events
to the simulator. This causes the simulated ATM to run continuously.
Problems and issues. The system bypasses the model view controller architecture that is commonly used in
Java applications. This may become a problem when we want to integrate our system with other systems

2.4 Version 4: Delegation based approach

New requirements. In version 1 we already observed that there were some maintenance problems with the
State pattern. In this version we have added a requirement for run-time configuration. This feature can be use-
ful for dynamically reconfiguring of the system. In our ATM simulator, for instance, it might be necessary to
disable the receipt feature when the machine runs out of paper. Such a dynamic change can be modeled by
rewiring a few arrows in the FSM describing the simulator. Making such changes in the FSM at run-time
forces us to abandon the State pattern since this pattern relies on an implementation-time technique, inherit-
ance, for adding states and transitions. The following requirements were addressed in this version:
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Figure 5 Version 4: A delegation based approach
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• Configurability. Allow for run-time configuration, we want to be able to add new states and transitions at
run-time.

• Separation of concern. In the previous versions, we noticed that the details of the ATMSimualtor get
mixed with the typical behavior of finite state machines. Somehow it should be possible to keep the two
separated.

Changes. We refactored the system to use delegation instead of inheritance (see Figure 5). This design deci-
sion is based on our earlier work presented in [Van Gurp & Bosch 1999]. Unfortunately, this change turned out
to be quite radical. Rather than sub-classing ATMState, the class is instantiated when a new state is needed.
Also, state transitions now have a first class representation (i.e. the FSMTransition class). Each state has a list
of transition event pairs and a dispatch method that looks up the correct transitions for incoming events. Tran-
sitions, in turn delegate their behavior to FSMAction classes. The latter is an incarnation of the Command pat-
tern [Gamma et al. 1995]. The intention of this pattern is to delegate behavior to a subclass of FSMAction that
implements specific behavior. This way, the behavior is separated from the control flow.

Furthermore, it was trivial to model state entry and exit events, which are commonly used in FSM specifi-
cations, so we added FSMActions that are executed when these events occur. We used this design solution to
re-implement the ATMSimulator. Much of the code in the original FSMState subclasses could be copied into
the FSMAction subclasses.

The changes are outlined in the diagram in Figure 5. Both a diagram of the framework and a small code
example of how the framework is used are displayed. The AbstractFSMAction used in the example is a class
that implements the FSMAction interface. This makes it easier to create inner classes for FSMActions. In the
example, the three states we used before are created as FSMState instances. After that we add an initAction to
one of them and use this state in a transition. The transition has no usefull behavior associated with it so we use
the DummyAction class. If necessary real behavior can be inserted by creating an inner class just like we did
with the initAction.
Problems and issues. While we no longer have to subclass FSMState, we still need to create FSMAction sub-
classes. However, these can be reused in various state transitions or even in other FSMs. A second issue may
be performance. The transition lookup used to find the right transition for the right event is more expensive
than a virtual method call. However, in our case this is not likely to be a very big problem since there won’t be
enough state transitions per second to notice the problem.

A second issue is that the FSMAction instances still need to be provided with a reference to the context that
stores all the shared data. This is done by passing the context object as a parameter to the execute method:

public void execute(FSMContext fsmc)

Since, typically, this data is stored in a subclass of FSMContext, a typecast is needed. Apart from not being
type safe, typecasts are also slower than normal referencing of variables.

Another problem is that creating a FSM now involves a lot of bookkeeping. ATMSimulator (now a subclass
of FSMContext) consists of mostly static declarations of the states and transitions. Since we chose to use Java’s
inner class mechanism for creating the FSMAction subclasses, most of the ATMSimulator class consists of
inner class declarations.

Effectively, we have created our own domain language where the various components form the language
constructs. Unfortunately a lot of bookkeeping is involved in using this language. We have to create subclasses
of FSMAction, just to add behavior to the system; we have to create component instances and link them
together using method calls such as addTransition. For a more detailed discussion about the merits of this
design solution we refer to [Van Gurp & Bosch 1999].

2.5 Version 5: Further decoupling

New requirements. The goal of the fifth version of the ATMSimulator was to further reduce the dependencies
on compile-time mechanisms. Version 4 still has a large static code block containing the specification of the
ATM structure. This version addresses the following requirement:
8



• Flexibility. The solution in version 4 puts the entire ATMFSM in a single class. A lot of this code is made
static, which means that it cannot be changed at run-time and is difficult to maintain. In this version we
increase the flexibility by addressing this issue.

Changes. To address this we introduced a new class, FSM that can be used to create a FSM at run-time and
contains information about the structure of a FSM. This separates the responsibility of storing the FSM struc-
ture from the more general FSM mechanisms of dispatching events. The new FSM class in Figure 6 can be
used in a blackbox fashion (i.e. it is not necessary to create subclasses of FSM). Figure 6 also lists some exam-
ple code that shows how to add states and transitions in the new version.

Typically, users create an instance of this class and use this instance to create the FSM by adding states and
transitions. Then they create an FSMContext instance and parameterize it with the FSM. If necessary more
than one FSMContext instance can be created. If the FSM instance is changed, all existing FSMContexts are
affected by it. Effectively, this separates the contextual information (i.e. the variables in FSMContext sub-
classes) from the structure (i.e. the states, events and transitions) and the behavior (i.e. the FSMAction imple-
mentations).

While the changes to the FSM classes were minor, they had considerable consequences for the ATMSimu-
lator specifics, which in the previous version consisted of a large static block of State declarations and
addTransition method calls. In the new version all these calls had to be rewritten and were moved to the main
method of the program (located in a class called ATMMain). The only remaining ATMSimulator specifics in
this version of the system are the subclass of FSMContext containing all the variables used by the FSMAction
implementations and the calls to the FSM instance in the main method that create the ATM state machine
structure.
Problems and issues. We only addressed one issue identified for the previous version: the static declarations.
So, all the other issues identified there also apply to this version.

2.6 Evolution of ATM Simulator

Important Design Decisions. In the development of the ATMSimulator, we can identify several important
design decisions. Perhaps the single most important decision was to abandon inheritance in favor of delegation
as a mechanism for creating new states. The most important design decisions and their effects are outlined in
table 1. As can be observed in this table, many of the decisions had system wide effects (e.g. decisions 1.1, 2.2,
3.2 and 4.1). Also some decisions effectively reversed decisions taken earlier. The most notable example is
decision 4.1 which effectively reversed 1.1. But there are other examples: 2.2 reversed 1.3, 3.1 reversed 1.4
and 5.1 reversed 2.1.
Metrics. To compare the different versions we have collected a several metrics (table 2). The metrics clearly

Figure 6 Version 5: The new FSM class included
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show how the various design decisions affected the system. Some of the decisions had a positive effect on sys-
tem complexity. We have drawn the following conclusions from the metrics:
• Overall system complexity (in terms of lines of code, lines of code per method, number of classes) has

increased substantially from version 1 to version 5.
• Converting inheritance relations to delegation relations in version 4 was the most radical change.
• Version 5 has better modularization than version 4. This is reflected in the decreased ncss per function.

Because modularization also means increasing the number of modules (e.g. classes), the number of ncss is
slightly larger than version 4.

• With the exception of version 2, each version has caused the total amount of ncss to increase.

Table 1: Design decisions in the evolution of the ATM Simulator

Version Decision Effect on the system
v1 1.1 Use the State pattern There’s a subclass of ATMState for each state in the ATM

FSM.
1.2 Put data in context class Each event method in the State subclasses refers to the con-

text class for data retrieval.
1.3 Make context a property of ATMState The context variable is available to all event methods.
1.4 Use the command line for the userinter-

face
The code is littered with calls to System.out and System.in.

v2 2.1 Make instances of State subclasses static The keyword static needs to put before instantiations.
2.2 Remove the context property from

ATMState and use a parameter in each
event method instead

All event methods need to be edited to support the new
parameter.

v3 3.1 Create a GUI A class is added to the system.
3.2 Replace all uses of System.in and Sys-

tem.out with calls to the GUI.
All event methods need editing.

3.3 Use the pipes & filters pattern for com-
munication between the GUI and the
similator

The changes needed in the event methods are minor.

v4 4.1 Refactor the system to a delegation
based approach

New classes are created that model the behavior of states and
transitions.

4.2 Use the Command pattern for imple-
menting behavior

For each event method in version 3, an inner class needs to be
created that implements the FSMAction interface. Then an
instance of this class needs to be associated with transition
instances.

4.3 Introduce state exit an entry events The event dispatching mechanism needed to be adapted to
support this.

v5 5.1 Use a state and transition factory class A new class is created.The initialization code can be made
non static, initialization code becomes simpler.

Table 2: Metrics for the different versions

Versions: v1 v2 v3 v4 v5
number of packages 1 1 2 3 3
number of (inner) classes 15 15 17 22 23
number of functions 59 57 62 36 47
ncss (non commented source statements) 239 209 247 256 282
ncss/function 4.05 3.67 3.98 7.11 6
new (inner) classes - 0 1 19 13
new functions - 0 6 33 12
removed (inner) classes - 0 0 14 12
10



However, not all changes are reflected in the metrics. In both versions 4 and 5 a considerable amount of exist-
ing code was rewritten (although we did use the copy/paste function a lot). Also the class refactorings between
version 1 and 2 were considerable.

3 The minimal strategy

Based on the data in table 1 and table 2, we can say that several of the design decisions would have been unre-
alistic in an industrial situation. Going from version 3 to version 4, for instance, caused quite a few changes
that affected the whole system. In large systems, consisting of a large amount of lines of code, such a change
would effectively retire the old system and all the effort that went into it. The only reason the changes were
feasible in our version was that our system is relatively small which enabled us to follow an optimal strategy
for implementing the requirements. However, if we had followed a minimal strategy, the system would have
looked differently. In this section we outline what could have happened if we had followed the minimal strate-
gy for evolving version 1. A summary of alternatives can be found in table 3.
Version 1 - 2. The changes in this version consisted of moving class variables from ATMState to ATMContext
and introducing a context parameter in all methods implementing state transitions. In an industrial sized sys-
tem, this would have been considerably more work due to the larger number of classes and variables. An alter-
native might have been to use arrays that contain a variable for each instance of FSMContext. However, this
would require a lot of changes as well and is ultimately more error prone.
Version 2 - 3. As pointed out before, the changes between these versions were designed in such a way that
existing code was affected as little as possible. Even in our small version the better solution of using events
was no option.
Version 3 - 4. As these were the most radical changes in the evolution of the simulator, they would probably
not have been feasible in an industrial setting. The motivation for making the changes was that it would be nice
to be able to make changes to the FSM structure to enable such features as dynamic disabling of the receipt
function. However, as pointed out, the inheritance-based implementation is not very suitable for supporting
this kind of dynamicity. In an industrial setting abandoning inheritance would simply be too much effort. A

Table 3: Minimal strategy

Version Decision Alternative
v2 2.1 Make instances of State subclasses

static
Unchanged

2.2 Remove the context property from
ATMState and use a parameter in each
event method instead

Use the array option outlined above to avoid having to move
properties

v3 3.1 Create a GUI Unchanged
3.2 Replace all uses of System.in and Sys-

tem.out with calls to the GUI.
Unchanged

3.3 Use the pipes & filters pattern for com-
munication between the GUI and the
similator

Unchanged

v4 4.1 Refactor the system to a delegation
based approach

Change the ATM FSM to support disabling of the receipt
option and other features that need to be supported

4.2 Use the Command pattern for imple-
menting behavior

Unchanged

4.3 Introduce state exit an entry events Add a stateEntry and stateExit method to the ATMState
class and manually enforce that those methods are called
when appropriate

v5 5.1 Use a state and transition factory Not needed
11



likely alternative would have been to identify the things that need to be configured at run-time (e.g. the receipt
feature) and implement it either by making the FSM more complex (i.e. create transitions with and without the
receipt functionality) or using some sort of boolean variable to control the behavior.
Version 4 - 5. The last change was merely an optimization of the design introduced in the previous version.
Since that version would likely have never been created in the first place we don’t provide an alternative solu-
tion here.

4 Analysis

The main goal of designing and implementing the various versions of the ATM Simulator was to observe and
analyse what happens when a system is evolved as new requirements are added. By putting a strong emphasis
on such requirements as flexibility, reusability and maintainability, our system began to show similar problems
as those typically found in industrial cases.
Architectural drift. The initial version of the ATM Simulator was a relatively compact version. However,
because of the design, maintainability and flexibility were less than ideal. We addressed these issues in the sub-
sequent versions by changing the program structure; adding new classes; moving blocks of code around; etc.
The design in version 5 still implements the same functionality as version 1. Yet, it is much larger and more
complex. A lot of the new code is not functionality related but structure related. The added structure provides
some additional flexibility over the first version. However, it also makes that version harder to understand.
This may lead to architectural drift. Developers that do not fully understand the design may take sub-optimal
decisions.
Vaporized design decisions. An example of a vaporized design decision in our system is the use of the pipes
& filters architecture for communication with the GUI. This design decision only makes sense if you know that
the simulator was originally equipped with a command line interface. Despite the fact that our system is lim-
ited to only five versions, most of the earlier design decisions vaporized. In a larger system there will be even
more of these vaporized decisions.
Design erosion. Another issue is that version 5 shows some signs of design erosion, despite the fact that we
tried to follow the optimal strategy. An example of this is the parameter of the execute method in each FSMAc-
tion implementation. This parameter passes the action a reference to the context that contains all of the shared
variables. However, in our implementation we use a subclass of FSMContext that contains these variables.
Consequently all actions must perform a typecast on the context parameter to get access to these variables. A
second sign of design erosion is the solution used to connect the GUI to the state machine. The pipes and filters
solution we chose was a direct result from the fact that the first version was commandline based. Since we tried
to preserve much of the functionality in this version, we had to somehow duplicate this type of interactive
behavior. Our solution consisted of connecting a text field to a pipe that on the other side was connected to a so
called BufferedReader that functions in a similar way as the input from the console we used in the first version.
While this allowed us to preserve much of the code, an event based approach would have been more natural if
we had build version 5 directly.

All these characteristics of the final version are a result of design decisions taken in earlier versions.
Because of changes in requirements these decisions can no longer be considered as optimal for version 5. Con-
sequently, version 5 is not the optimal design for the requirements we specified for it. Yet, constructing an opti-
mal system would mean abandoning much of the code we already wrote in earlier versions. These problems
are even worse in the version of the system we presented in Section 3, since this version contains a lot of
‘quick fixes’.

Arguably, in our prototype throwing away large parts of the code is not a very big issue (because of titss-
mall size). Our intention is to illustrate to the reader that this sort of problems also occur in large industrial sys-
tems that evolve throughout the years. Each design decision in it self can be seen as valid. However, when
considered all at once there may very well be a more optimal system. Because of the legacy of existing code,
which in an industrial setting often represents an investment of many person years, this is no option, however.
12



In Section 3 we discuss alternative implementations for our simulator that would have been more likely in an
industrial setting. The quick and dirty fixes discussed in this section clearly do not contribute to the clarity of
the code. Using such solutions as global arrays to prevent adding a parameter to a method, solve the problem at
hand but at the same time contribute to the erosion of the design.
Accumulated design decisions. A related issue is that of hardwired design decisions. In the ATMSimulator,
we had a major restructuring of the code between version 3 and version 4. This was caused by our decision to
abandon the State pattern, adopted in version 1. This earlier decision had an enormous impact on the code
structure (see table 2). Undoing it required quite a lot of effort and might not have been feasible in a larger
project with hundreds of states and events. It also caused us to reconsider other decisions such as decision 2.1
in table 1.
Limitations of the OO paradigm. The changes between each version aimed to resolve a particular issue in
the previous version. One could argue that version 5 addresses all issues we encountered during development.
However, we already showed that version 5 may not be the most optimal system, despite the optimal design
strategy we applied. We suspect that many of the solutions we presented are workarounds for problems with
the OO paradigm.
• Inheritance. The reason we moved from an inheritance-based to a delegation-based solution in version 4

was that we needed run-time flexibility. The inheritance-based solution was more compact (i.e. was a better
expression of the functionality) however inheritance makes it impossible to meet the run-time flexibility
requirement so we needed to work around it.

• Typecasting. From version 2, the FSMContext no longer was a property of the state objects. Consequently,
when performing a state transition, references to the context object needed to be passed as a parameter. In
version 4 and later, we use subclasses of FSMContext to model the context. The FSMAction interface
defines an FSMContext parameter, however. So, consequently we have to use type casting to resolve this.
This is a known issue with the OO paradigm and there is a good solution for it: parameterized classes. How-
ever, this is not supported in Java currently.

• Encapsulation. The OO paradigm prescribes us to encapsulate data into objects. However in our ATMSim-
ulator the quality requirements forced us to centralize data in the ATMContext class (and later subclasses of
FSMContext). To reduce memory overhead, we had to apply the Flyweight pattern. Because of the above
we violated Demeter’s law [Lieberherr 1989] that prescribes that only calls to objects which are class vari-
ables in which the call originates and calls to objects that are passed as a parameter of the method from
which the call originates, are legal.

Optimal vs. minimal strategy. As pointed out before, several of the decisions in table 1 would not have been
feasible in a larger system. This kind of decisions is typical for what we call an optimal strategy for implement-
ing requirements. In Section 3 we outlined some alternatives for some of those decisions. These alternatives
have in common that they address the immediate need (e.g. run-time flexibility) while minimizing impact on
the system. The short-term advantage is that it speeds up development. However, in the long-term this type of
decisions becomes an obstacle for further development. However, even the optimal strategy does not lead to an
optimal design. It just delays inevitable problems like design erosion and architectural drift.
Lessons learned. Based on our experiences with the development of the five versions of the ATMSimulator,
we can draw some conclusions.
• Some conceptually simple design decisions have enormous consequences for the code. The decision to

abandon inheritance as a mechanism for creating new states in version 4, for instance, caused a lot of code
to be moved around.

• The differences between the initial version and the final version are considerable. Without knowledge of the
in between versions, it is hard to deduce why the system looks the way it does.

• In none of the versions, a quantification of the quality attributes was the driving force behind the changes.
Instead, in each case a particular usage or change scenario drove the changes.

• Our requirement for run-time flexibility caused us to use design patterns such as the Flyweight pattern and
the Command pattern. While these commonly used design solutions work, the result can seem overly com-
13



plex. In the first version, behavior of a transition could be changed by changing a method, in the final ver-
sion, the FSMAction class needs to be sub classed. The subclass must define an execute method. Then an
instance of the newly created subclass needs to be created and inserted into the transition. While Java pro-
vides some syntactic sugar (e.g. inner classes), the whole procedure seems awkward.

• A lot of the code refactorings in between the versions involve a lot of more or less mechanical changes (e.g.
cutting and pasting lines of code). This suggests that some of these refactorings can be automated as for
instance is done for some refactorings in [Roberts, Brant, Johnson 1997].

• Later design decisions become more difficult because the earlier design decisions have to be taken into
account. Even in our small prototype, we had to deal with the legacy of the first few versions when going
from version 4 to version 5. This caused us to move around a lot of code.

Research issues. To be able to prevent and counter design erosion, a lot of research is needed. We have identi-
fied a number of issues that we feel need to be addressed. Some of these issues are already the topic of existing
research. However this research has not yet brought us to the point where we can prevent design erosion.
• Separation of concerns. There is a lot of ongoing research in this area (e.g. [Kiczalez et al. 1997][Lieber-

herr 1996] and [Tarr, Ossher, Harrison 1999]). However, we have the impression that most of this research
focusses on isolating smaller pieces of code rather than larger architectural components. It is unclear if and
how such techniques will scale when used in conjunction with very large industrial systems. So far there is
hardly any casestudy material to confirm the effectiveness of these techniques in larger systems.

• Expressiveness of representations. Related to the previous issue is the representations used to model a
system. We have experienced that more often than not the source code is the documentation. Consequently,
many of the concepts used during the design phase are represented in an implicit fashion. This causes seri-
ous maintenance issues since maintainers will have to reconstruct the design from the source code before
they can change it.

• Refactoring. There has been some promising research into code refactoring (most notably [Fowler et al.
1999] and [Roberts, Brant, Johnson 1997]). However, more advanced, preferably automated, refactorings
would be usefull.

• Methodology. As pointed out in this paper, most existing development methods are flawed because they
iteratively accumulate design decisions. Since it is inevitable that requirements change over time, it is also
inevitable that sooner or later design erosion occurs (because some of the earlier decisions become invalid).
Current research focusses on fighting the symptoms (i.e. design erosion) rather than the problems (i.e. the
previous topics). New methodologies such as extreme programming [Beck 1999] address this by adopting a
stepwise refinement strategy with frequent releases. However, there are issues with respect to, among oth-
ers, planning and cost management of projects using such methods.

5 Conclusion

In this paper we have evaluated an extensive example of evolutionary design to assess what happens to a sys-
tem during evolution. The example clearly demonstrates how design erosion works. Design decisions taken
early in the evolution of a system may conflict with requirements that need to be incorporated later in the evo-
lution. In the example, we reversed several of such decisions. However, in large industrial systems such a thing
is often infeasible due to the radical, system wide impact of such changes.

In the analysis of our design efforts we have found evidence of architectural drift, vaporized design deci-
sions and design erosion. Causes we identified for these problems ranged from the accumulation of multiple
design decisions (i.e. certain design decisions were taken because of earlier design decisions, even if these
were wrong decisions) to limitations of the OO paradigm. An important conclusion is that even an optimal
design strategy (i.e. no compromises with e.g. cost are made) for the design phase does not deliver an optimal
design. The reason for this is the changes in requirements that may occur in later evolution cycles. Such
changes may cause design decisions taken earlier to be less optimal.
Future work. In our analysis of the case study we highlighted several issues. One of them, limitations of the
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OO paradigm, will form the starting point for our future research. We intend to explore alternatives and exten-
sions to the OO paradigm as possible solutions to the issue of design erosion. It appears that, using the OO par-
adigm, some important concerns are mixed. Untangling those concerns may be the key to addressing at least
some of the issues identified in this paper.

A second issue that we intend to explore is that of the design method. It seems that the current practice of
software development is to create a design in advance. However, as noted in the introduction this conflicts with
the iterative nature of many development methods. New requirements are constantly added to the system and
as our case study demonstrates they often conflict with design decisions taken in earlier iterations or in the
design phase. We believe such conflicts are the primary cause for the phenomena of design erosion.
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