
Experiences with Realizing Smart Space Web
Service Applications

Jilles van Gurp, Christian Prehofer, Cristiano di Flora
Nokia Research Center

Email: [jilles.vangurp|christian.prehofer|cristiano.di-flora@nokia.com]

Abstract— This paper presents our approach for building an
internet based middleware platform for smart spaces as well as
a number of services and applications that we have developed
on top of it. We outline the architecture for the smart space
middleware and discuss several applications and services that we
have so far realized with this middleware. The presented material
highlights key concepts in our middleware vision: services are
HTTP based and restful; applications are accessed through a
browser so that they are available on a wide variety of devices;
and we demonstrate the concept of bridging non internet enabled
smart space devices to our IP and HTTP centric smart space
network.

I. INTRODUCTION

This paper focuses on middleware for ubiquitous applica-
tions in — what we call – smart spaces. A smart space is
a multi-user, multi-device, dynamic interaction environment
that enhances a physical space by virtual services [1]. These
services enable the participants to interact with each other and
other objects in a P2P way in the smart space. The research
in the area of ubiquitous and pervasive computing has led
to many interesting research demos and usage experiences.
Building on widely spread wireless devices such as phones,
PDAs and other special purpose devices, there is an enormous
potential to create new smart space services and applications.

However, despite many efforts in industrial and academic
research [1], [2], [3], [4], [5], the mass market uptake has
been very sluggish. We outlined several reasons for this
in our earlier paper on this topic [14], which include: use
of disruptive/experimental technology; lack of maturity of
research prototypes; lack of proper development environments;
and the fact that most of these systems tend to be one
of a kind verticals optimized for a particular use case or
research problem. The purpose of this paper is to outline our
approach to address this issue: we want to build smart space
software systems that have a good perspective for mass market
adoption.

While mass market adoption of ubicomp technology has
so far been weak, there has been an astounding growth of
web-based, Internet applications during the last 15 years. Most
recently this has occured in the areas of web services and Web
2.0 [9]. What has enabled this progress is not just the web
browser and the agreement on some key (de-facto) standards,
but also a wealth of development tools, content management
systems and other internet centric tooling. For instance, even
end-users can now easily create content on many internet sites.

Fig. 1. Local IP network with smart devices acting as proxies

Because this is so easy, there is now a wealth of user generated
content on the internet.

Consequently, our approach builds on these technologies.
By reusing the technologies that enable the type of col-
laborative and social services associated with the Web 2.0
phenomenon, we enable applications and services in the smart
space. This means that mobile devices can host web services
and other devices can connect directly, thus enabling a P2P
network. The contribution of the paper is to present such an
architecture and middleware on mobile devices, and to show
how it can be realized with current devices and open source
software.

Earlier approaches like CoolTown [?] have applied basic
web architectures to ubiquitous applications based on PDAs.
We now see the opportunity to use these traditional as well as
new Web 2.0 technologies as a platform for providing services
to ubiquitous devices [6], [7]. Recent advances in device
technologies allow us to bring both the key web standard
software and development tools to widely deployed personal
devices (mobile phones, PDAs). For instance, many mobile
devices can not only surf the Internet, but can also provide
web services based on mobile web servers.

II. ARCHITECTURE AND KEY DESIGN DECISIONS

This section summarizes our Smart Space architecture from
[14]. The Smart Space Network (see Figure 1) is based on a
decentralized, local, IP-based network which includes devices
and services provided by the smart space owner. These devices

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1-4244-1457-1/08/$25.00 © IEEE
1171

include PC-class devices and high-end mobile devices that
can connect to a WLAN, have a browser, and have the
ability to run a web application server. The web server is
needed for hosting smart space services. The device base can
also span other devices such as low end phones without the
mentioned capabilities or non personal networked devices such
as bluetooth accessories, UPnP appliances and sensors.

While all these devices can be part of the smart space
network directly or indirectly, only the high end devices in
the classification above have the ability to run custom service
software. Consequently, we consider these devices to be the
backbone of our smart space architecture. Sensor/actuator
networks are often connected to high end devices not by
IP networking but through technologies such as Wibree or
Bluetooth that may also be used for connecting to consumer
electronics. To integrate such devices in the smart space, their
services are published by and accessed through technology-
specific proxies running on a high-end device. This means
that a high-end device accesses the sensor using the sensor-
specific interconnection technology and exposes its features to
the rest of the smart space.

Devices joining the smart space network become part of the
smart space. However, to access services and web applications
in the smart space network, a device needs to discover their
existence and their network addresses. In the local smart space
we use the Zeroconf mDNS mechanism [10], [11], which is
similar to DNS and integrates into the hostname resolution
at the OS level. This also supports service registration and
discovery. This design choice is further motivated in our earlier
work [14].

By using mDNS, devices can advertise their name within
a locally scoped namespace, e.g., device A is available at de-
viceA.local address. Such a locally scoped symbolic hostname
may then be transparently resolved by other devices in the
smart space. Indeed, since mDNS integrates into the OS in
the same way as DNS does, existing software such as web
browsers or web service clients can use the .local hostnames
without any modification. Additionally, devices can make ser-
vices available through such locally scoped web server URLs.
For example, a photo website offered by the mydevice.local
device could be accessed at http://mydevice.local/
photos.

Figure 2 provides an overview of the system architecture of
our web based infrastructure for smart spaces. The bottom
layer contains a IP based network protocol stack and the
Zeroconf based discovery mechanism. The base platform and
communication layer on top of that contains components that
we see as necessary to realize a full web platform in the smart
space.

Most of these components are based on existing software
already available in the market such as web servers and
databases. The components in this layer are used to run web
services, web applications and for hosting multimedia con-
tent. Using off-the-shelf web components allows us to bring
many features to the smart space such as, for example, user
management and security solutions, instant messaging, and

Fig. 2. System Architecture

asynchronous communication infrastructures. A key difference
with a normal web server is that services and applications
running on a mobile device (e.g. a python script or OSGI
Java components) can access the Zeroconf service discovery
mechanism to integrate other services in the smart space as
well as native device features such as the phone camera,
contacts, bluetooth, etc.

On top of these two layers we have realized several smart
space services and web applications. These demonstrator ap-
plications, and the services they depend upon (third layer), are
discussed in more detail in the next section. Compared to other
work, the key design decisions that characterize our approach
are as follows:

• Bridging/proxying non IP devices. As we focus on
IP infrastructure, we also run technology-specific proxy
components on smart devices that connect to non IP
devices to access the features and services of these
devices and offer them to the rest of the smart space.

• Zeroconf naming and service discovery. The infrastruc-
ture cannot rely on central facilities (such as DNS) to
address naming of devices in the smart space. Zeroconf
mDNS is designed to solve this issue and integrates into
the operating systems hosting it, so as to allow existing
software to use it without requiring any modification.

• HTTP. HTTP and REST-like web services are used as the
primary means for integrating software across devices in
the smart space, similarly to what currently happens on
the Internet, where HTTP forms the cross platform glue
that allows mash-ups across the extremely heterogeneous
network of the Internet.

• Reuse of existing web technology. As mentioned in
Section I, a key problem with existing solutions in the
ubiquitous and pervasive computing research community
is that they are rarely reusable. By relying on existing web
technology, the infrastructure opens up to a large number
of devices already available in the current market.

• Multiple software run-times. After years where mobile
development platform choice was limited to J2ME and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1172

C/C++, high end mobile devices are now offering devices
a much wider range of technologies, including the already
mentioned support for Python and other scripting lan-
guages. In this way, platform developers can use several
run times. This means that many existing components
used on the web can be used in a smart space context as
well.

III. SMART SPACE WEB APPLICATIONS

As a proof of concept for our smart space concepts, we have
developed middleware services and a few demo applications
for the Nokia N800 internet tablet. The N800 is a Linux
based device equipped with a touch screen, a WLAN device
and various end user applications, including a web browser.
The device runs Nokia’s Maemo operating system, which
is a Debian Linux derived system for which many open
source software packages are available. We have realized an
implementation of the architecture on the N800 by integrating
open source packages. The most important of these packages
include:

• Avahi This is an implementation of mDNS for linux that
integrates seamlessly into Linux. With Avahi installed,
applications are able to resolve Zeroconf .local host
names. Additionally, avahi includes commandline tools
for discovering and publishing services.

• Lighthttpd + FastCGI enabled scripting languages
Lighthttpd is a lightweight webserver that can run on
the N800. Using FastCGI, scripting environments such
as Python and PHP can integrate into the webserver.
The web applications discussed below are implemented
in Python on top of the Django framework.

• SQLLite This is a so-called embedded SQL database
that, unlike non-embedded databases, does not require
running a separate database server but can be accessed
in-process using a library, which reduces overhead sig-
nificantly.

• OSGi service container In addition to the web server,
a separate Java based service container is used. This
service container is based on the Eclipse Equinox OSGi
framework which runs in a Java CDC virtual machine.

As can be seen from this small summary, there is some
overlap in functionality and room for optimization by remov-
ing packages. The criteria for package selection was merely
availability of software components on the N800 to realize the
applications and services discussed below and not to provide
a fully integrated, one size fits all smart space platform.
We envision that future smart spaces, similar to the internet,
will use a much wider variety of software on many devices
in many different compositions and configurations. We are
already planning to move beyond the N800 and are considering
components for Nokia Series 60 phones for example where we
have a port of apache and python available [8] as well as many
interesting native features that are integrated into S60 Python
(e.g. access to phone camera; contacts and calendar).

Fig. 3. Web portal to smart space

A. Zeroconf Web service

As discussed in Section II, the smart space concept depends
on Zeroconf for publishing and discovering services. However
since Zeroconf is not a very web like technology and since
Zeroconf is also not available on all devices, we have chosen
to implement a web service wrapper around the Zeroconf
functionality provided by Avahi. The API of this service is
based on REST (Representative State Transfer) [13]. A list
of known hosts and services can be obtained by a simple
HTTP GET on /hosts and /services. This will return
an XML formatted list of hosts or services known on that
device. Using parameters such as type and host, the list of
services may be filtered. Given a serviceid, a description
of the service can be accessed by doing a HTTP GET of
the /services/$<$serviceid$>$ url. In order to post
services, one simply posts the details to /services.

The web based publishing and discovery is used by the
other services in Figure 2. Consequently, our services and
applications are not dependent on Zeroconf directly. This
makes it possible to access and run them on devices that do
not have Zeroconf simply by accessing Zeroconf through a
webservice on a device in the network that does have Zeroconf
support. Additionally, by replacing the service implementation,
we can remove the dependency on Zeroconf entirely.

B. Smart Space Portal

To the user, the smart space appears to be just a set of
browsable web sites. Like normal web applications, these sites
are hosted on web servers. The only difference is that in
addition to regular web servers on the internet, there are also
web servers running on devices in the smart space. Like on the
internet, a key problem is finding interesting web pages and
’starting’ points for browsing. This problem is solved using
the concept of a smart space portal. The portal concept is
illustrated with a screenshot of the N800 browser in Figure 3.
The browser is displaying a web page on foobar.local, which
is the Zeroconf name of a N800 device in our lab. The owner
of this device may visit this page at any time by redirecting
the browser to it (e.g. using a bookmark). The web page is
dynamically created by a web application running on python

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1173

Fig. 4. AJAX Chat Application

and the Django application framework. The implementation
makes use of the Zeroconf Web service to discover other portal
websites.

On the page, several links to similar portals on other devices
are listed as well as links to music, photo and video content on
the local device that the user can choose to share. Additionally,
the portal integrates a search feature. As can be seen in the
screenshot, there is an option to search content locally as
well as in the smart space. When searching locally, the search
service accesses a search engine that we have developed for the
N800. This search engine, which is based on Apache’s Lucene
project, indexes content on the device. This search service
is published through Zeroconf web service. When using the
second button, the search service works by discovering all the
search services in the network and aggregating their results.

Finally the portal has a few links for latest movies, photos
and music. These links use a predefined query (e.g. mimetype:
audio/mpeg) to search the smart space. The results are ordered
by timestamp. A nice use case for this is to browse for example
the latest photos taken by people in the smart space at an event.

C. Chat

A second application we have realized is a simple, IRC
like web based chat client. This client uses a light weight
REST based publish-subscribe mechanism that we have im-
plemented on top of Zeroconf. Similar to the Zeroconf Web
Service, this service is also based on REST principles. Chan-
nels can be created by sending an HTTP Post message to
/smartspace/chat/channel/1/. This results in the
creation of a message feed which may then be accessed by
doing an HTTP GET on the feed url, which returns an Atom
feed with the latest messages in a feed with id=1. In addition
to the id, a uuid and a type are advertised for the feed as well.
The uuid is a required Atom field. Posting a text message to
a feed url results in the addition of the message to the feed.

Clients can advertise their interest in channels by publishing
a notification service. The service advertisement includes an
attribute to specify the feed uuid. When a message is posted,
the feed service discovers all advertised notification services

Fig. 5. UPnP Browser

with its uuid and posts a notification message to them (which
includes the feed url).

The screenshot in Figure 4 demonstrates a simple AJAX
chat client based on these services. Users can create a channel
and subsscribe to existing channels. In the screenshot, a user
has created a channel and posted a message. The same mech-
anism can be used to implement asynchronous application
messaging.

D. UPnP Media Integration

A third application we have created demonstrates the con-
cept of bridging discussed in Section II. Unlike the other two
applications, this application is currently not fully integrated
into the portal.

Figure 6, presents an overview of how it works:

• A control device with UPnP and Zeroconf capability acts
as a bridge between the smart space network and UPnP
devices in the network.

• The device discovers UPnP devices and exposes them to
a REST-ful API. Using this API, XML descriptions of
device and service descriptions may be accessed.

• A bridge component uses the UPnP REST API to dis-
cover UPnP devices and advertises their REST service
end points using the Zeroconf Web Services

• Finally applications discover the advertised services and
consume them.

In Figure 5 a screenshot of a AJAX UPnP browser is
displayed. The application discovers advertised UPnP devices
and allows the user to browse their description and services.
In the screenshot two UPnP devices have been found and the
description for one of them has been expanded (a UPnP Media
server running on a Nokia N95).

IV. CONCLUSIONS

This paper presents early results from currently ongoing
work at Nokia Research Center to create a web based platform
for smart space applications and services. In an earlier article
[14], we already presented requirements and the key design
decisions we summarize in Section II. Our vision is that smart
spaces will extend the current internet onto people’s devices

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1174

Fig. 6. UPnP Zeroconf Integration

where smart space services will integrate the local space into
the internet, thus truely creating an internet of things. To
enable such an internet of things, it is critical to align well with
internet technology. Consequently, we make use of already
available technologies such as web servers, search engines,
discovery mechanisms, etc. We aim to minimize the amount
of new technology needed since it is our vision that while
disruptive conceptually, it can be realized without requiring
users to update devices and software. Currently, mobile phone
vendors are already selling WIFI enabled devices with ad-
vanced networking and browsing capabilities.

We have presented several smart space applications and
services that we have so far implemented on top of our Smart
Space Middleware Service platform. The software illustrates
key concepts from our vision. The applications and services
integrate over HTTP, which we see as the best way to span
as much mobile devices as possible. Our services implement
REST-ful APIs, which makes them light weight and easy
to consume from applications, services and even in browser
side Javascript (e.g. the chat and UPnP browser). Finally our
applications can be accessed through a (mobile) web browser
thus making them accessible on a wide range of devices.

This paper covers a lot of material and is very much ongoing
work. We are currently layering many interesting features on
top of the outlined technologies. Additionally, we are trialling
in various use cases and expanding our middleware to support
this. For example, we are currently working on a authentication
and authorization that like what we present in this paper, builds
on internet technology.

ACKNOWLEDGMENT

The authors are grateful to the project team at Nokia
Research Center for many discussions and insights leading
to this approach. We would particularly like to mention our
colleagues Jaakko Kyro, Kari Ahvanainen, Heikki Matila and
Pasi Liimatainen who have been involved with both conceptual
work and implementation of software in this project.

REFERENCES

[1] Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R., Zhang, D., Seman-
tic Space: an infrastructure for smart spaces, IEEE Pervasive Computing,
3(3) pp. 32-39, 2004.

[2] Abowd, G. D. Mynatt, E. D., Designing for the human experience in smart
environments. In Cook, D. J. and Das, S. K., eds., Smart Environments:
Technology, Protocols, and Applications, pp. 153-174, Wiley, 2005.

[3] Kaasinen, E., Niemela, M., Tuomisto, T., Valkkynen, P., Ermolov, V.,
Identifying User Requirements for a Mobile Terminal Centric Ubiquitous
Computing Architecture, Proc. of International Workshop on System
Support for Future Mobile Computing Applications, pp. 9-16, IEEE
Computer Society, 2006.

[4] Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., Finin,
P., Meeting the computational needs of intelligent environments: The
Metaglue system. In Proceedings of MANSE’99, Dublin, Ireland, 1999.

[5] Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S, EasyLiving:
Technologies for intelligent environments. In Proceedings of Second
International Symposium on Handheld and Ubiquitous Computing (HUC
2000), Bristol, UK. Springer, LNCS1927, 2000.

[6] Schroth, C., Janner, T., Web 2.0 and SOA: Converging Concepts Enabling
the Internet of Services, IT Professional, 9(3), pp. 36-41, 2007.

[7] Yamakami, T., MobileWeb 2.0: Lessons from Web 2.0 and Past Mobile
Internet Development, in Proceedings of International Conference on
Multimedia and Ubiquitous Engineering, 2007.

[8] Mobile Web Server, Raccoon, http://wiki.opensource.nokia.
com/projects/Mobile_Web_Server, 2007.

[9] O’Reilly, T., Web 2.0: Compact Definition, http://radar.
oreilly.com/archives/2005/10/web_20_compact\
_definition.html, 2005.

[10] Guttman, E., Microsyst, S., Autoconfiguration for IP Networking: En-
abling Local Communication, IEEE Internet Computing 5 (3), pp. 81-86,
2001.

[11] Engelstad, P., Van Thanh, D., Jonvik, T.E., Name resolution in mobile
ad-hoc networks, in Proceedings of the 10th International Conference on
Telecommunications, ICT 2003., IEEE Computer Society, 2003.

[12] UpnP Forum, UpnP Device Architecture 1.0, July 2006, http://www.
upnp.org/resources/documents.asp, 2006.

[13] Fielding, R.T., Architectural Styles and the Design of Network-based
Software Architectures, University of California, 2000.

[14] Christian Prehofer, Jilles van Gurp, Cristiano di Flora Towards the
Web as a Platform for Ubiquitous Applications in Smart Spaces, Second
Workshop on Requirements and Solutions for Pervasive Software In-
frastructures (RSPSI), at UBICOMB 2007, Innsbruck, 16-19 Sebtember,
2007.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

1175

