
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.313

Practice

Design preservation over
subsequent releases of a
software product:
a case study of Baan ERP

Jilles van Gurp1,∗,†, Sjaak Brinkkemper2 and Jan Bosch3

1Creative Online Development B.V., Nijmegen, The Netherlands
2Institute of Information and Computing Sciences, University of Utrecht, Utrecht, The Netherlands
3Nokia Research Center, FI-00045 Nokia Group, Finland

SUMMARY

We present the results of two case studies we conducted at Baan in the Netherlands. At the time
of conducting the case studies, Baan was part of Invensys plc. (Baan is now owned by SSA Global
Technologies.) In these case studies we investigated how companies identify design erosion and address
this in their software, a practice we call ‘design preservation’. In this study, we selected two sub-systems
in Baan products that had recently been subjected to extensive maintenance activities because they were
eroded. In this paper, we analyze the problems these systems had, how Baan identified that these systems
were problematic, and the remedies that were used to address the problems. In addition to confirming some
of our earlier conclusions, we have been able to extract some common causes for design erosion problems
as well as a number of recommended design preservation practices, which, at least for Baan, have proven
to be very effective in strengthening design preservation. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: software aging; design erosion; architecture erosion; software quality; software evolution;
enhancive maintenance; adaptive maintenance

1. INTRODUCTION

1.1. Software erosion and design preservation

The growing scale of software systems makes it increasingly hard to maintain software due to the
amount and complexity of the source code. However, at the same time, it is also becoming ever
more infeasible to discard large software systems due to the investment these systems represent.

∗Correspondence to: Jilles van Gurp, Creative Online Development B.V., Wijchenseweg 111, NL-6538 SW Nijmegen,
The Netherlands.
†E-mail: jilles@jillesvangurp.com

Received 6 March 2004
Copyright c© 2005 John Wiley & Sons, Ltd. Revised 15 February 2005

Accepted 17 February 2005

278 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

However, software-developing organizations often find themselves in a situation where their existing
software or sub-systems of their software are proving to be increasingly hard to maintain and adapt to
new requirements. A major concern for software developing companies is that this situation forces them
to choose between two evils: either abandon a software system representing years or decades of work
and invest heavily in a new system to replace it, or continue to maintain a non-maintainable system.

Neither option is very attractive. The first option would essentially set such companies back a
few years (time they need to re-develop their software). Potentially (e.g., if competing companies
have better software) this could threaten the existence of such companies. The other alternative
(continue to maintain) is not attractive either, since elevated maintenance costs or an inability to adapt
the software to new customer requirements deteriorate the competitive advantage that the software
provides. Ultimately, this leads to a situation where other players on the market have a much stronger
software offering. Because the only options are either to completely replace the system, or to subject
the system to an extensive revision, there is not much that can be done about such a situation on short
notice.

Web browser developer Netscape is an example of a company that got itself in a situation where
they were faced with this choice [1]. In 1997, version 4.0 of Netscape Communicator was released.
Around the same time, Microsoft released its version 4.0 of Internet Explorer. The subsequent events
are well known: the two companies engaged in a browser war, which ended with Microsoft dominating
the browser market. Around 1998 it was becoming apparent that, for various reasons, Netscape
Communicator was losing the battle. Netscape urgently needed a new and improved version of their
Netscape Communicator product. However, they could not deliver it. The old version 4 source code
was proving hard to adapt and finally in late 1998, Netscape, in a desperate effort to regain its market
share, chose to release its browser as open source (in what is now known as the Mozilla project). After a
few months, the old source code was discarded and development of a new browser was started. Mozilla
1.0 was released June 2002. During the development of Mozilla, Netscape continued to release minor
updates to Netscape Communicator and even released an ill-fated version 6.0 based on a development
release of the Mozilla project. However, their market share shrank from more than 50% to what is now
estimated at less than 5%. While recent reviews of releases of the Mozilla browser (and commercial
Netscape releases derived from it) are quite favorable, Microsoft continues to dominate the browser
market. Recently, what remained of the company Netscape was liquidated. The Mozilla project is now
managed by an independent foundation.

We believe that problems such as encountered by Netscape are common to all large software product
vendors. As their products evolve in subsequent releases, changes accumulate and may become an
obstacle for further releases. This phenomenon has been referred to as architecture erosion or software
aging [2–4]. We prefer the term design erosion to architecture erosion because, in our earlier case
study [5], we found that the effects of design erosion are not limited to just the software architecture,
but affect all development and maintenance artifacts. The case study we present in this paper confirms
this view.

Design erosion is the cumulative, negative effect of changes on the quality of a software system.
By quality we refer to the aggregated quality attributes such as extensibility, flexibility, maintainability,
etc. Each change is a trade-off between cost, requirements (functional and non-functional) and time
(e.g., product release deadlines). Inevitably, compromises have to be made with respect to some quality
attributes. As a result, the quality of the system is said to erode because of the combined and cumulative
effects of such compromises over time.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 279

This case study was further motivated by our experience with various other case studies we have
conducted with other companies in the past decade. For example, Axis AB in Sweden [6] who man-
ufacture various server appliances (e.g., printers or scanners) to connect to a network, have a reusable
software system that they use in all their products. At some point, they found out that certain features
that were required could not be added to their existing software. The only way to resolve this situation
was to redevelop the software. This took more than two years, during which they continued to release
products based on the old software and simultaneously worked on the next generation of their software.

Design erosion is a wide-spread problem that, as we argued in our earlier study [5], eventually affects
all software systems. In [5], we presented our experiences with the evolution of a software system
that we created. Our software system was evolved in a number of steps. In each evolutionary step,
new requirements were introduced and the software system was changed to meet these requirements.
The study clearly demonstrates that new requirements may conflict with design decisions taken earlier.
These conflicts either lead to radical changes in the software or, if that is infeasible, result in awkward
design solutions that work around rather than fix the problems. In the latter case problems with respect
to understandability, flexibility, and maintainability may arise since the changed design is not optimal
for the set of requirements it must address. Due to subsequent sub-optimal design decisions, these
problems only get worse.

Obviously, design erosion poses an enormous threat to any organization that depends on large
software systems. These organizations, at the very least, risk losing their competitive advantage because
they gradually lose the ability to make necessary changes to their systems. Ultimately, the existence
of such organizations may be threatened as well since it may prove very expensive to repair eroded
software systems. The Netscape case is a good example of this. Note that this applies both to software
product vendors that commercially depend on the quality of their products, and to organizations owning
large scale software systems supporting critical business processes.

Consequently, it is important for companies to be able to recognize signs of design erosion before
it is too late (i.e., before facing an expensive repair/replacement choice). If design erosion is detected
in time, an effort can be made to preserve the software design. Design preservation is about ensuring
that an evolving software design remains in such a condition that necessary changes remain possible.
Typically, as is illustrated by the case studies presented in this paper, design preservation is an ongoing
activity to recognize, repair, and prevent design erosion that includes five aspects.

• Symptoms. Monitoring the quality attributes of the software during its life.
• Identification. Identifying low-quality software components.
• Causes. Analyzing why the quality is low.
• Resolution. Addressing the quality issues by executing corrective actions.
• Prevention. Adapting the development and maintenance processes in order to avoid these

problems in the future.

1.2. Research questions

In this paper, we present the results of two case studies, which we conducted at Baan to investigate
how such a large software developing organization has managed to preserve the design of its software
product. Baan, currently a part of SSA Global Technologies, is an international software company
that develops ERP (Enterprise Resource Planning) products and implements these products on site.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

280 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

Like many organization fielding software products, Baan regards most software maintenance work,
such as enhancive, adaptive, or perfective maintenance, as being continued development, and hence
usually terms most maintenance as ‘development’.

Baan’s ERP software consists of a set of integrated packages for the administrative support of
manufacturing, resource planning, sales, purchasing, warehousing, and finance. About 15 000 customer
sites worldwide are running Baan ERP software in the larger and medium enterprises. In the ERP
domain, Baan has been competing with companies such as SAP, Oracle, Peoplesoft, and Microsoft
Navision. Baan has a large research and development department with development centers performing
development and some types of maintenance in the Netherlands and India [7]. The research and
development department is responsible for the Business Intelligence, Middleware, and E-commerce
products in the ERP product line, which are the subjects of our case studies.

The purpose of these case studies is to explore the problems and issues encountered in software
developing organizations, such as Baan, with respect to design erosion and to design preservation
strategies. In order to do so, we answer the following research questions (derived from the five aspects
of design preservation outlined above).

• Quality monitoring. What are the effects of design erosion on a system?
• Identification. How does an organization decide that their software is eroded and needs to be

repaired and how does this decision process work?
• Analysis. What are common causes for erosion?
• Resolution. What kinds of solutions are applied to fix an eroded system? How and when do

decisions with respect to preservation and repair need to be taken?
• Prevention. What practices help prevent erosion? What are good practices that are applied in

both cases?

In Section 5, some generalized answers to these questions based on both case studies are presented.
Additionally, based on the current design practice at Baan, a number of recommended practices are
proffered.

1.3. Organization of this paper

In Section 2, we describe our research method. The case studies are presented in Sections 3 and 4,
respectively. In Section 5, we provide answers to the research questions and discuss them in relation to
related work. We conclude our paper in Section 6 with the lessons learned.

2. RESEARCH METHOD

In this section, we outline the empirical research approach we have applied in the case studies and
discuss its strengths and weaknesses. In his editorial for a journal of empirical software engineering [8],
Basili makes a plea for the use of empirical studies to validate theories and models that are the result
of software engineering research. In a more recent publication, [9], Basili presents an overview of
how empirical research has benefited NASA’s Software Engineering Lab. When performing empirical
research, a distinction can be made between qualitative empirical studies and quantitative studies.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 281

The approach advocated by Basili in [8,9] can be characterized as mostly quantitative. As can be
seen in [9], collecting quantitative data is a labor-intensive process that needs to be tightly integrated
with the software processes used. In a setting such as NASA, where reliable, dependable software is
required, this is feasible. The results of the quantitative empirical research are used to optimize the
maintenance and development processes. However, in many other contexts this is much less feasible.

Qualitative data, on the other hand, is relatively easy to obtain and has the advantage of providing
more explanatory information [10], which, in an exploratory case study such as ours, is very desirable.
As is noted by Seaman in [10], neither quantitative nor qualitative empirical research can prove a given
hypothesis. Empirical research can only be used to support or refute a given hypothesis. According
to Seaman, a combination of both quantitative and qualitative studies is the best way of supporting a
hypothesis. In this paper, we try to combine the best of both worlds.

2.1. Case selection

Throughout both case studies, we have cooperated with Baan’s Research and Development (R&D)
department. Baan R&D management was very much interested in the results of the case study for
the sake of: (a) providing an outsider analysis on the architecting and engineering practices; and
(b) educating the product architects and software engineers with the results. Our primary contact there
was the process architect (at the time of the case study), Sjaak Brinkkemper, who is also a co-author
of this paper. Using the expertise and knowledge of Baan’s product portfolio, two representative sub-
systems were selected for further study, and contacts with the staff working on these sub-systems
were initiated. Before selecting the sub-systems for the cases, we had several meetings with the R&D
department during which we discussed the organizational structure, the product lines of Baan, the goals
for the case study, and made an estimate of the time needed for both case studies.

We were looking for software products with the following properties:

• the systems had to be mature enough to have endured design evolution;
• during the evolution, there must have been significant changes in the requirements;
• it should be possible to both interview people who were involved in the initial development of

the system and people who were involved in restructuring the system for new requirements.

2.2. Interviews

In this exploratory case study, we use interviews as the primary tool of retrieving information.
Consequently, our research is mostly of a qualitative nature. However, where possible, we complement
the qualitative data with quantitative data provided by the interviewees (e.g., estimated defect rates,
number of lines of code, etc.). Much of the qualitative information we extracted from the interviewees
is actually based on quantitative information available internally within Baan. However, due to the
confidential nature of such data we were not given direct access. We have experienced that, in general,
software-developing companies are reluctant to disclose quantitative data on defect rates or any other
metrics that might be used to adversely affect competitive stance.

In both case studies reported in this paper, the interviews followed the same pattern. We first met with
the interviewees in a group for an introductory meeting. During this meeting, the purpose of the case
study was communicated and a brainstorm session was held to select appropriate modules/components

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

282 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

for further study. This meeting was also used for planning subsequent interviews. In the following
meetings, both group and individual interviews were held during which more specific questions about
the design and evolution of the system were asked. In addition to interviews, we were given access
to various documents including, for example, functional designs and requirements documentation.
Using these documents, we were able to both verify/clarify certain statements of the interviewees as
well as prepare specific questions in advance.

2.3. Validation

To ensure the correctness of our data and conclusions, we have used two methods.

• Cross checking. In both cases, we interviewed multiple personnel separately. This allowed us
to compare their answers and verify whether there were any contradictions. In both cases, we
were given access to relevant software documentation, which allowed us to further validate our
information.

• Feedback. An important part of qualitative research is feedback. The data presented in this article
consists mostly of our interpretation of interviews with the interviewees. Therefore, verifying
whether or not this interpretation is correct is an essential part of ensuring the validity of
our case study. After each meeting, a report detailing our conclusions and interpretation was
communicated to the interviewees for feedback. In addition, this paper was co-authored and the
case study results were reviewed by a member of Baan’s R&D department and several other
people within Baan.

2.4. Limitations of this study

There are a number of issues with our research approach that may affect the validity and generality of
our findings.

• Representativeness of the cases. By limiting ourselves to one company, we risk that these case
studies’ conclusions may not be applicable to other domains and companies. Both the corporate
culture and the domain Baan is operating in affect our conclusions. However, based on our
experience with case studies in other companies, the corporate culture in Baan is representative
of many software-developing companies. Additionally, Baan is one of the market leaders in their
domain and can thus be seen as representative for its domain.

• Quantitative data. As explained earlier, we use a (mostly) qualitative approach. Complementing
our data with quantitative metrics would strengthen our conclusions. However, there are a few
reasons why this study does so only to a limited extent. First of all, this is an exploratory
study. A quantitative study requires a precise formulation of hypotheses, relevant quantifiable
parameters, and a model for the interpretation of values for these parameters. A study such
as presented here may provide the necessary input to formulate hypotheses and parameters
for future quantitative studies. Second, a quantitative study generally requires a significant
investment of time and other resources. Finally, many relevant metrics that would need
to be collected are generally considered as sensitive information in software development
organizations. Baan is no different in this respect.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 283

• Cases are not comparable. We have deliberately chosen to research two cases from different
domains to show that identification, resolution, and prevention of design erosion works the
same across domains. Therefore, however, both cases use different types of technology and
involve people with different skills and training. On the other hand, both teams operate in
centrally managed release projects to design and build the sub-systems as part of one product
as that software evolves. This makes it possible to compare the results of both case studies,
notwithstanding some limitations.

• Biased response from interviewees. Because of their involvement with the software, a potential
problem may be that the responses from the interviews are biased. However, we do note that
many of the interviewees had not been involved with the earlier versions of the software about
which we were interviewing them. A potential other concern is the fact that our interviewees
might be biased by the fact that the co-author held a management position within the R&D
department. In practice, however, this proved not to be an issue. Baan R&D is so large that the
department our co-author was in has little to do with the departments where we conducted our
case studies. In fact, when meeting with the interviewees of the query processor (QP) case, our
co-author actually had to introduce himself to the interviewees since that was the first time they
had met.

3. CASE 1: THE QUERY PROCESSOR

The QP is an important sub-system component in the database access layer in the Baan ERP system
product line. The database layer has evolved for more than a decade and currently supports several
commercial Relational Database Management Systems (RDBMSs) based on SQL (Structured Query
Language). However, when it was originally created, SQL was not even standardized. In addition,
the way applications interacted with a database was very different from how this is done today.
Consequently, the database layer has seen many changes during its existence.

Early versions of the database layer did not support SQL at all (and did not have the QP component).
Applications interacted with the database through a procedural application programmer interface (API)
known as C-ISAM (C Indexed Sequential Access Method). This procedural API allows for operations
on rows of database tables. Over the years, the database layer was changed to support SQL. The QP
component was originally introduced as a means to convert SQL to C-ISAM calls and vice versa.
However, over the years this component has been changed considerably to support new SQL features,
SQL RDBMSs, etc. In 1999, it was decided to redesign and re-implement the QP component. In this
section, we examine how the QP component evolved, why it needed to be replaced, and how the new
version addresses the issues with the old version.

3.1. Evolution

The set of modules that offers, among others, the database functionality in the Baan ERP product line
is known as Tools. Before version 4.3 of this package, the Baan software ran on a central mainframe
computer with terminals attached. Baan applications executed in the Baan shell which, in turn, simply
used the procedural C-ISAM layer to communicate with the database (see Figure 1). Note, that the
special shape of the Baan applications in the figures relates to the modular ERP packages for Sales,

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

284 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

����������	�
����

���������

���������

�����������
�����

Figure 1. Overview of Baan architecture before version 4.3 of the Tools package.

Manufacturing, Purchase, Warehousing, and the like. However, we do not go into more detail as this
generic functional architecture is beyond the scope of this paper.

Around 1990, the architecture was converted to a client–server architecture. Rather than calling the
database directly through the C-ISAM API, operations on the database were passed to a component
known as BDB (Baan Database), which has a client and a server part. The BDB component has
a similar API as C-ISAM so for applications the changes were relatively minor. The BDB client
(BDB/C) component passes the calls to the BDB server (BDB/S) component (see Figure 2). BDB/S
in turn passes the calls to the DB-Driver component, which in turn calls a database specific driver
(e.g., Oracle or Informix). The purpose of the DB-Driver component is to shield BDB/S from
any database vendor specific issues. Consequently, Baan applications can work with databases
from multiple vendors. In addition to passing database calls, the BDB components also provide
functionality for transactions and sessions, i.e., the so-called ACID (Atomicity, Consistency, Isolation,
and Durability) properties [11].

Shortly after the move to the new architecture, there was an increasing demand from application
developers to support SQL. SQL was standardized in 1992. However, at this time there were still
significant differences in what parts of the standard were supported by database vendors. In addition,
there were differences in how specific SQL features were supported, and many databases have
proprietary extensions to SQL.

To prevent creating database-vendor specific applications, Baan SQL was created, which supports
a subset of SQL features deemed important as well as some Baan specific features and extensions of
SQL. A new client-side module, the QP, allowed applications to use Baan SQL to query the database.
In the first version, QP simply translated SQL to database calls and subsequently called the BDB/C
component to execute the calls. Since this is done on the client side, we will refer to this component as
QP/C (see Figure 3).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 285

����������

�	�
� �	�
�

����� ������

�������	��	���� 	���������	����

	�������

���������������������

���������������

Figure 2. Baan architecture from and after version 4.3 of the Tools package.

���������

����� ����

	����
 ������

������	���������� �����	���	�������

��
�����

��	�������
�����	
����

 ���

����������	�
����

Figure 3. QP/C added SQL on the client side.

In the next version (Figure 4), the server side was also equipped with a QP module. This made
it possible to reduce traffic between client and server. Because of the row-based nature of database
calls, there was a lot of network traffic between client and server. By moving part of the evaluation of
a SQL query to the server, the amount of traffic could be reduced. A client-side QP component was
still needed, e.g., for doing joins on query results from multiple databases. In addition, QP/C contains
functionality to work around certain database specific limitations (such as, e.g., a maximum amount of
allowed joins or a maximum amount of columns in a table).

In this version, QP/S still used BDB/S for communication with the database. The database drivers
in this generation of the architecture are referred to as level 1 drivers to indicate that they are still row
oriented (i.e., SQL statements are translated to C-ISAM style database calls).

The intention of a large customer to deploy Baan applications in a Wide-Area Network (WAN)
prompted Baan to eliminate database calls between client and server entirely because the latency

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

286 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

���������

�����

����

	����
 ������

������	���������� �����	���	�������

��
���������

��	�������
�����	
����

��	����

�

�����	
���� ��� ���!�

����������	�
����

Figure 4. QP/S added SQL on the server side.

����������

�	�
� �	�
�

����� ������

�������	��

	����
	���������	����

	����������������������

�������������
�

���

��
����

���

����
�����������

���

�������

���������������

Figure 5. Baan architecture with the addition of the SSTS and the level 2 driver.

introduced by using a WAN would make these calls too expensive. Instead of database calls, all
database interaction was now done using SQL (see Figure 5).

However, database calls still needed to be supported because of the large number of applications
using this style of interacting with the database. Consequently, database calls needed to be translated
to SQL on the client side. This was done by adding the SSTS (Single row, Single table Translation
Services) component to the QP/C as shown in Figure 5. The BDB/C module was still needed though
to provide functionality related to sessions and transactions.

Up until this version of the architecture, all queries had passed through BDB/S, which communicated
with a database driver (referred to as a level 1 driver) component through the procedural C-ISAM API.
However, modern databases support all or most of SQL 92 and many newer features that were added to

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 287

SQL later. Converting this advanced type of SQL to the procedural calls used by the driver component
is not feasible. Therefore, a second type of database driver was added to the architecture that can
convert the Baan version of SQL to a database specific SQL without the conversion to the C-ISAM
calls. This new type of driver was referred to as the level 2 driver.

Additionally, the level 2 drivers still had to support Baan SQL specific things (e.g., array columns,
column lengths greater than supported by the underlying database, a Baan-specific LIKE operator, etc.)
that were not supported in regular SQL. With the level 1 drivers, this was relatively easy; however the
level 2 drivers needed to translate to SQL instead of procedural calls. The QP/S became responsible for
splitting Baan SQL queries into regular SQL sub-queries that can be understood by the level 2 driver
and then later combine the results of these sub-queries.

Despite the fact that no C-ISAM style calls are needed anymore, the BDB client and server
components are still needed for handling the transaction logic (i.e., making groups of queries atomic).
This is especially important if more than one database is involved in a query (e.g., a join of tables from
different databases).

In incremental steps, the architecture evolved from a single tier architecture with support for C-ISAM
databases (Figure 1) to a client–server architecture with support for modern SQL databases (Figure 5).
During the process, the system became increasingly difficult to maintain (more on this later) and thus
it was decided to redesign and develop both QP components.

3.2. Problems and causes

There were several issues with the QP/C and QP/S components that led to the decision to redevelop
these components. A distinction should be made between the symptoms and their causes. Important
symptoms that something was wrong with the QP components include the following.

• It was observed (during routine inspections of defect metrics, etc.) that fixing defects in the QP
components took unusually long. The personnel we interviewed estimated that the average time
that was needed to fix a typical defect was about a week.

• The list of defects that needed to be fixed had grown quite substantially. About 100 serious
defects had been identified. Fixing some of these defects would require a substantial redesign of
the QP components. Addressing all defects would require substantial investment.

• The process of fixing a defect often introduced new defects and regressions.
• The behavior of the QP components was inconsistent with the SQL standard or any other form

of documentation available internally.
• Affected personnel had learned to work around these inconsistencies and were actually relying

on these workarounds for the correct behavior of their applications.
• Personnel found it difficult to understand the design of the QP modules. After the personnel who

developed the initial version of QP/C left the company, this became a problem.
• Poor code quality. Due to the various changes, the lack of documentation and the lack of design,

the code quality had deteriorated over the years. The personnel cited a lack of modularity,
dependencies between code modules, and pollution of data structures with unrelated data
elements, as being the most striking symptoms of this problem.

A number of causes for these issues were identified as follows.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

288 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

• Over the years, there had been a number of changes (as discussed above) due to considerable
evolution in requirements or due to evolution of database technology. From a procedural
C-ISAM-based, single-tier approach, the system evolved to a client–server architecture with
support for SQL on the client. Subsequent changes also introduced a RDBMS with SQL on the
server side and finally the C-ISAM style of database interaction was replaced by SQL entirely.
Both QP modules were substantially affected by these changes.

• The behavior of the QP evolved beyond what had been envisioned when the QP had been
designed. Consequently, up-to-date architecture design documentation and other specifications
were lacking.

• The lack of proper documentation made it hard to test the QP components since specifications
of the correct behavior were lacking. Consequently, users of the component had to find out
for themselves whether and how the component worked, which explains why application
maintainers were relying on incorrect understandings of the behavior of the component.

• The people who originally designed the QP were no longer working for Baan. The system they
created was very complex and hard to understand for the people who replaced them.

• QP/S supported both the obsolete level 1 and the new level 2 drivers. The functionality for these
two types of drivers was mixed. Many problems originated from the operational differences
between level 1 QP and the level 2 QP.

3.3. Solutions

As pointed out previously, the QP components were below company standards in 1999. They had
become increasingly hard to maintain. There were numerous defects that were scheduled to be fixed
and the personnel were increasingly depending on incorrect understandings of the behavior of these
components and working around the components’ limitations. In addition, SQL had by then become
the standard way of interacting with databases and there was an increasing demand from users and
potential customers for supporting the more advanced features of SQL such as, for example, unions,
expressions in select clauses, the distinct key word, etc.

To address these issues, a project was started to redesign the QP components. An explicit goal was
to make the transition to the NQP (new QP) as smooth as possible and to prevent having to perform
adaptive maintenance on the existing applications [12]. However, at the same time it was recognized
that incorrect usage of SQL (which was permitted with the old QP) could no longer be tolerated.
Consequently, some degree of incompatibility was anticipated.

As a result, the existing architecture was preserved and only the QP components were replaced.
It was anticipated that it was not possible to complete all of the NQP before the next Baan product
release. So, it was decided to break up the work in two stages. In stage 0, the QP/S was replaced,
and in stage 1 the QP/C was replaced as well. Both releases had a full functioning query processing,
although the underlying architecture changed significantly. In addition, the careful planning for the
migration resulted in a minimum amount of effort required for adapting the Baan applications portfolio.
The switch, which had been built into the NQP to optionally use the old QP, could be removed once
stage 1 was completed.

A number of practices were adopted to prevent the NQP from suffering the same fate as the old QP.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 289

• Adoption of object-oriented principles. It was recognized that certain object-oriented features
such as, for example, inheritance, delegation and information hiding, were needed to improve
reusability and modularity of the system. Therefore, it was decided to use C++ for the NQP
rather than ordinary C, which was used in the rest of the system. However, for portability reasons
(in 1999 there were still considerable differences between C++ compilers on various platforms)
only a subset of C++ features was to be used (for example, C++ templates are not used).

• Explicit requirements and design. Since the early 1990s, a number of development and
maintenance practices had been adopted in Baan. Among them were rigorous requirements and
design phases [13]. Therefore, before starting the realization phase, the NQP requirements were
specified and an object-oriented design was created. These documents also formed the basis for
end-user documentation and regression tests.

• Documentation. The SQL supported by the NQP was fully documented so that there could be
no misunderstanding as to how to use it. Any inconsistency between documentation and actual
behavior is now considered to be a defect.

• Automated regression testing. For each encountered defect and for each feature, an automated
test was created to prevent future regressions by subsequent changes. By the time stage 0 was
complete, the test suite consisted of about 330 automated tests, which were run after each change
to the system. After stage 1, the number had grown to about 800 tests.

• Migration tools. Because incorrect QP behavior was no longer supported, applications needed to
be migrated to the NQP. During a transition period, personnel could indicate with a flag whether
the old QP or the NQP was to be used. In addition, they were given tools that automatically
located SQL constructions in their applications that were no longer supported. After stage 1 was
finished, the ability to run the old QP was disabled (i.e., the recent versions of Baan applications
use the NQP).

3.4. Analysis

At the time we conducted our interviews, a version of the Baan ERP product line had been completed
that included the NQP (stage 0 and stage 1). The project was considered successful by the personnel
involved and the management. The following aspects were cited as success indicators.

• The defect fixing time had decreased considerably. In the old QP a single defect often took more
than a week to fix. In the new QP, defects were fixed much faster (typically less than a day).

• There were considerably fewer defects. Interviewees even claimed that there had so far been
hardly any need for corrective maintenance. Most likely, this is because of the regression tests
which automatically test most of the software’s features. By the time NQP/C was finished, there
were 800+ automated tests that were run after every major change, which helped prevent the
incorporation of additional defects from maintenance.

• The migration was very successful. Migrating the old Baan applications to the NQP had been an
important priority. The migration was so successful that the objective was reached to remove the
old QP after stage 1 was completed.

• Due to the increased modularity of the software, it is easier to implement new features. Inter-
viewees indicated that identifying and implementing new SQL features was their current priority.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

290 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

Also during the implementation of stage 1 they were able to reuse classes from the stage 0
implementation.

Arguably, the NQP is significantly better than the old QP component in terms of extensibility and
code quality. However, that does not mean it is free from issues. During implementation of NQP stage 1,
personnel encountered a problem with some of the code in the stage 0 implementation. Under time-
pressure, this code was not as generic as it should have been to allow for reuse in stage 1. Consequently,
some adaptive maintenance was needed to fix this. In addition, there were some integration problems
of NQP/C with the Baan shell. In the end it was decided to support some of the legacy features of the
old QP to prevent breaking compatibility with existing applications. However, these legacy features are
now fully documented (so there are no misunderstandings about the NQP behavior) and their use in
new applications is discouraged.

4. CASE 2: PURCHASE AND SALES SCHEDULES

The subject of our second case study is the Purchase and Sales Schedules (PSS) functionality in the
Order Management (OM) package, which is one of the application subsystems in the Baan ERP system
product line. Due to the different nature of this application and the different type of information we
retrieved from the interviewees, we use a slightly different format than in the previous section. In the
previous section, we looked at multiple versions of the QP component to reconstruct its evolution.

The second case concerns evolution within only one version of the system. Our intention is to
demonstrate that design erosion can also occur within the time-span of one version. In addition, it
should be mentioned that the maintenance of this version spanned a considerable amount of time
during which various test versions were tried out at customer sites. So, even though this is a single
release, the software and artifacts underwent a significant amount of changes, some of which were
specifically aimed at improving the quality of the system.

Because we are only looking at one release, we do not present an overview of the architecture
evolution as in the previous section. Instead, we present a brief overview of the important milestones
in the development of the PSS package.

Like all applications in the Baan ERP product line, the Order Management system is an application
that runs on top of an application engine, called the Baan shell. The Baan shell is a virtual machine that
provides maintainers with a C-like 4GL language and sits as a layer between Baan applications and
the infrastructure (e.g., the database functionality discussed in the previous section). The Baan ERP
architecture is outlined in Figure 6. In this figure, the gray boxes represent the components that are
developed by third parties. As mentioned, the Baan shell environment works as a virtual machine to
ensure platform independence. The architecture is portable and is able to run with various operating
systems/user interfaces. The application code consists of a number of packages, which in turn consist
of modules (these are also referred to as dlls within Baan). The PSS case study mainly deals with one
of these packages: the OM package.

PSS are a highly automated way of ordering without a lot of administrative handling based
on long-term supplier agreements, which sits aside of normal ordering processes within OM
(see Figure 7). A schedule is a list of requirements containing both forecast and order information
that is send to the supplier on regular intervals. The forecast contains future global order information.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 291

����

���������	�

�	���������	�

�������	�����

�������	���

���	�

����������������

��	����	����	

�����������

�����	

�����	���	

����

��
�!���

�	��

�����������

Figure 6. General overview of the Baan ERP architecture.

�����	���"��

���������������
���

#������������
���

�"�	�����	���"��

$���	��
%���������

������!"��
�
���

�������
�����������	����

���

&�
���������������'�

(�)�*

�������+�,���%����%�

$����%�-�����"���

)�!"��

�
�
�
��
�
�
��
�
�
�
�

)
�
��
�
�
�

"�������

���	�����

"�������"�
����

�������
� ���� �������

�������'��	���"��

��
�������������

�"���	���"���'

�"���	���"���'

Figure 7. Push and Pull scheduling.

The order information consists of detailed data on delivery date, quantity, and sequence. This data is
retrieved from a planning engine (Push Scheduling) or from decentralized demand (Pull Scheduling).
The supplier can use the forecast information for its production planning and use the order information
for delivery planning. The goods are delivered to a central warehouse (Push-based) or directly to the
place where the demand was raised (Pull-based).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

292 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

These types of schedules are used in industries where the goods flow is intensive, a large degree
of tuning is required, and timely execution is crucial for further operations. This is called the Just-In-
Time (JIT) paradigm in manufacturing. Boeing, which is an important customer of Baan, is a good
example of this. The parts that are used to construct the airplanes arrive just in time on the construction
site. For one and a half years, Boeing has been using the Baan PSS package to coordinate its JIT
processes.

4.1. Evolution

In Baan IV, Sales Order Delivery Schedules were supported. However, the need was identified to
address JIT principles and Original Equipment Manufacturer (OEM) relationships. To address these
requirements, the PSS package was added to the OM application. An internal project for the realization
of the PSS functionality was started as part of the development of the iBaan ERP 5.0c version.

First, the requirements were analyzed with, amongst others, DAF Trucks (a Dutch truck
manufacturer). After this, a conceptual solution was designed and a prototype was developed by one
of the development departments of Baan. The design and prototype were reviewed and tested by DAF
Trucks. In the remainder of this paper, we will refer to the prototype as PSS1.

Because of the feedback returned by DAF Trucks and other customers, it was not possible to
complete the realization phase in time for the release of iBaan ERP 5.0c. The feedback included a
substantial amount of new requirements that proved hard to implement in the prototype. The PSS1
design was not capable of absorbing these additional requirements, which resulted in a number of
quality problems (see the next section). Hence, there was a need to make drastic design changes and
extend the project for another year. The main focal points in this project extension were integration
with other ERP packages and code quality.

Even though the prototype was part of the 5.0c release (mainly to allow specific customers to evaluate
it), it was not made available to the Baan 5 customer base because of the listed problems. However,
Baan used the feedback on the design and prototype to further develop the PSS concept in iBaan ERP
5.1a. This release (PSS2) was a beta for the later iBaan ERP 6 series, focused on a single customer:
Boeing. Boeing added more requirements, reviewed the designs, and tested the intermediate solutions.
Subsequently they went on to deploy the iBaan ERP 5.1a on multiple sites in a live environment.
This proved to Baan that this version was mature enough to be shipped with the generally available
iBaan ERP 6 release. At the time that this paper was prepared, the PSS2 has been deployed at Boeing
for nearly one and a half years without any significant problems.

4.2. Problems and causes

As discussed above, there were a number of problems with the PSS1 module that prevented its
deployment in the iBaan ERP 5.0c release. Before starting development on PSS2, Baan conducted an
internal evaluation to assess what needed to be done. This evaluation revealed a number of problems.
The PSS package had been developed under a lot of time-pressure, and subsequent requirement
changes had resulted in a poorly structured system that affected the quality of the source code. Specific
problems that were cited by personnel included the following.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 293

• Code quality problems. Most of the application code was programmed in a C-like 4GL language.
While very flexible, this language is also easily abused in use. A number of problems with the
code quality were cited in relation to PSS1. These included the use of global variables, confusion
with respect to input and output variables (output variables were sometimes mistaken for local
input variables), and initialization problems. A consequence of these problems was that the code
was unnecessarily complex. Additionally, the number of defects was very high.

• Database Access Layer. The application architecture in Baan includes the Data Access Layer
(DAL) that shields applications from the database (see Figure 6). This layer contains business
objects and functionality related to the persistence of these objects in so-called DAL scripts.
The addition of this layer to the architecture is relatively new and its use was not enforced during
the PSS development. Consequently, there was a number of problems with application code
that accessed the database directly. Also there was a number of cases where DAL scripts were
extended with user interface code.

• Modularity. As mentioned before, Baan applications are decomposed into packages and
modules. A problem with the PSS modules was that there were many dependencies between
modules. In addition, several modules were very large (more than 10 thousand lines of code
(10 KLOC) per module in some cases) and functionality for some features was spread over
multiple modules. In addition to making the system more complex, this also caused problems
with the source code management system. When someone checks out a module from the
source code management system, it is locked (i.e., other personnel cannot make modifications
to it). Because there were many dependencies and because some modules were very large,
personnel typically had to check out a large number of modules to work on a particular feature.
Consequently, personnel had to wait for each other because files they needed to modify were
checked out to others making different modifications.

• Defects. Both project data about the number of revisions and the test data indicated that there
were an unusually large number of change requests, defects, and revisions in the PSS1 prototype.
An additional problem was that fixes for these defects were not always documented properly.
Consequently, the design documentation did not reflect all the changes to the system.

• Performance. There were various performance problems with the data model. In a database
centric product like PSS, the data model is very important. The data model was created as
part of the design phase. One of the problems interviewees cited was that the model was not
normalized. The normalization of database tables is necessary to restrict storing redundant data
in the database [11].

• Documentation. The documentation was incomplete (it was mostly based on the initial design
of the PSS1), contained errors, and generally lacked detail. Consequently, in many cases, the
correct behavior of the system was not specified and the actual behavior not described.

Some common causes for these issues are as follows.

• Requirement changes. The PSS1 design was based on the initial requirements that were gathered
from various sources. However, during the development more requirements were added by
among others, DAF Trucks. This resulted in a large number of change requests.

• Communication issues. The PSS1 was produced as a separate product at a location different
from that used for the other OM packages. In addition, the design of the system was largely
created by external contract workers. Due to the geographical distance and the fact that PSS1

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

294 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

was implemented as a separate project, there were communication problems. Many issues with
the PSS did not surface until integration with the other packages started. By that time, the
documentation, including the design, was seriously obsolete which further hindered integration.

• Process enforcement issues. The internal evaluation of PSS1 revealed that the usual process
for change requests had not been followed. Consequently, the PSS1 package had many
undocumented changes. In addition, several changes were characterized as ‘quick fixes’.

• Experience levels. The team assigned to the PSS1 development consisted largely of relatively
inexperienced personnel. As a result, many errors were made that more experienced personnel
would not have made. In combination with the already mentioned communication issues, this
probably was the main cause for the quality problems.

• Release pressure. The PSS1 version could not be finished in time for the 5.0c release. However,
the release pressure had caused the personnel to hurry and bypass the change request process.
Consequently, the quality of the PSS1 was below Baan’s quality standards. Because of this PSS1
was not made widely available to customers. For PSS2, better planning was done and the product
was released on time and with the right quality.

4.3. Solutions

To address the identified issues, a number of measures were taken. The evaluation had shown both the
functional design and the data model could be reused in PSS2 even though some modifications were
required. The following requirements were specified for PSS2.

• Integration. Many of the problematic requirement changes in the PSS1 development concerned
the integration with other Baan packages. Consequently, integration was made a priority in the
development of PSS2.

• Standardization. The standardization of terminology and a more consistent use of this
terminology in designs and source code were required.

• DAL. The use of DAL scripts to access the database were to be enforced.
• User interface. The user friendliness needed to be improved.
• Refactoring. The existing code needed to be restructured to improve the quality. About two thirds

of the available time was reserved for this.

Based on these requirements, a plan was made for the realization of PSS2. To avoid problems with
requirement changes, Boeing functional experts were involved during the development.

Traditionally, many features were implemented using copy–paste reuse. To create a new feature,
existing code was duplicated and edited. The obvious disadvantage is that any bugs in the duplicated
code will have to be fixed twice. To address this issue, templates were introduced. A template is a
reusable piece of code, specifically intended to be copied and completed. A template can be seen as a
way to emulate inheritance in a non-object-oriented language. While things such as object identity and
polymorphism are not supported in the Baan 4GL language, the Baan templates allow for creating a
skeleton of reusable code in an object-oriented fashion.

A substantial amount of time was spent on refactoring the various modules in the PSS package. Large
procedures were split into smaller ones (making the code both more readable and more reusable). A lot
of time was spent on making the code readable. The interviewees cited examples where huge case

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 295

statements were reduced to a handful of lines of code. In addition, a lot of so-called dead code was
eliminated.

Finally, large modules were split into smaller, more cohesive modules. This has the advantages of
improved concurrent working and increased understandability. First of all, smaller modules are easier
to understand. The second advantage is that the use of smaller modules makes it easier to work with
multiple team members on the system since, typically, a module is locked when it is checked out by a
team member.

4.4. Analysis

The transition from PSS1 to PSS2 can be considered very successful. Currently, Boeing has used a
version of Baan ERP that includes PSS2 for more than one and a half years without any serious issues.
This version is not exactly the same version as the current version of iBaan ERP 6, which includes
additional functionality not needed by Boeing.

PSS 1 and PSS 2 can be considered as two internal releases leading to, so far, the first release of
PSS as a part of the iBaan ERP version 6 product line. Speaking of design erosion in the context
of this release may seem odd. However, we think it is appropriate. During the development of PSS,
both requirements and architecture evolved significantly. In this case, we have seen that even in one
version of a software product, symptoms of design erosion may surface. Similar symptoms as in the
QP case were identified. For example, symptoms included uncertainty about specifications, problems
with respect to maintenance and various design issues.

Most of the problems mentioned in Section 4.2 have been addressed. By focusing on restructuring
the code, the problems with respect to code quality have been addressed. Consequently, the defect rates
have dropped dramatically. Interviewees estimated that they had fixed approximately three defects per
KLOC since the first release of PSS2. During the realization of the PSS2, this number was much higher.

A few practices can be identified that were responsible for the reduced defect rate.

• More attention was paid to the quality of the code. Consequently, the overall quality of the system
has increased substantially.

• Two thirds of the realization phase for PSS2 was reserved for restructuring and refactoring.
This allowed personnel to carefully review the source code and eliminate bad solutions.

• The customer, Boeing, was closely involved in the realization phase. Baan personnel frequently
had contact with the functional experts at Boeing. Consequently, there was continuous feedback
on the quality and functionality of the system.

• There was more focus on the structure of the system. Particularly the introduction of templates
and the enforced use of DAL scripts improved the structure of the system making the system
both more flexible and maintainable.

During the realization phase of PSS2, only one significant issue was encountered (mainly due to
time pressure). The integration with various other Baan packages proved to be much harder than was
anticipated. Consequently, the original plan for the realization phase did not allocate enough time
for this. Yet, the PSS2 package was released on schedule. Despite the integration problems, PSS2
was delivered to Boeing on time and relatively few defects have been reported in the subsequent
maintenance of the system. Currently PSS2 is shipped with the generally available iBaan ERP
version 6, which has been deployed on many customer sites.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

296 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

5. DISCUSSION

In this section, we address the research questions raised in the introduction (Section 1) and present a
number of recommended practices.

5.1. Research questions

In the introduction, we listed five research questions about the symptoms, identification, causes,
resolution, and prevention of design erosion during software evolution. The two cases we presented in
this paper are examples of systems where erosion was recognized and repaired. The first case is a good
example of erosion over multiple versions of a software system whereas the second case illustrates how
design erosion may affect and delay the development of a single version of a software system. In the
following sections we address the research questions using the results of these case studies.

5.1.1. Symptoms: what are the effects of design erosion on a system?

A first step in preserving the design of a software system is to recognize the symptoms of a deteriorating
system. Both of the cases we examined exhibited similar symptoms of deterioration.

• Code quality. In both cases, the personnel working with the system were unhappy with the
quality of the source code. They felt that the quality of the source code had increasingly become
a problem for working with the system. Quality problems included unnecessarily complex or
lengthy functions, abuse of language features, wrong use of infrastructure features, etc.

• Uncertainty about specifications. There was a great deal of uncertainty about the specification
of the system. The designs were sketchy and incomplete. In the case of the QP, the personnel
actually depended on unspecified and even incorrect behavior of the system. In the case of the
PSS, undocumented changes had been added to the system effectively making the existing design
specifications obsolete.

• Regressions. In both cases, fixes for defects often introduced new problems. The PSS package,
for instance, had seen a high number of defects fixed in the period prior to the release of the
prototype. According to the interviewees, this indicated that the quality of those fixes was
low and probably introduced additional problems. In the QP case, the near certainty of future
regressions was an important motivation to completely redo the software in order to address the
long list of known defects rather than to address each defect individually.

• Deployment problems. In both cases, there were problems with respect to the usage of the system.
The PSS1 package was considered too problematic to be released to customers and was not made
generally available in the Baan 5.0c release for which it was scheduled. The QP component
was deployed and used successfully for several years. However, personnel had to learn to work
around bugs in this component and were even depending on its incorrect behavior.

• Defect rates. In both cases, the interviewees indicated that prior to the rework the amount of
defects that needed to be fixed was substantially higher than in comparable systems. In the QP
case, the personnel also indicated that the average time needed to fix defects was much higher
(up to a week per defect).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 297

5.1.2. Identification: how does an organization decide that its software is eroding and needs to be
repaired, and how does this decision process work?

In order to be able to decide what to do with an eroded system, it has to be recognized first that the
system is eroded. Additionally it must be established whether it is worthwhile to undertake an effort to
repair that software. In the systems we examined, Baan concluded that something needed to be done.
A number of factors may play a role in identifying erosion.

• Defect densities. Baan uses a company-wide system to track the reporting of defects and their
repair. Defect figures in a particular software component, which are larger than the norm,
automatically trigger management to initiate proper action. In particular, in the QP case these
metrics played an important role in the decision to redo this component.

• Evaluation. In both cases, the decision to evolve the system was taken after an internal evaluation
of the software. In both cases these evaluations were prompted by problems with the existing
software and a general feeling that the software was not in a good condition (e.g., because of the
symptoms outlined above).

• Additional requirements. New requirements may call for enhancements that, given the quality
of the system at that point, are infeasible. In the case of the QP, there were approximately 100
defects that needed to be fixed and, in addition, there was also a number of features that would
likely be required in the future. This situation played an important role in the decision to redesign
the QP component. The problems with the PSS package became apparent when integrating
the PSS package with other packages (because of new customer requirements). This led to the
internal evaluation that triggered the PSS2 project.

• Change of staff. Personnel working in information systems, like most human beings, may be
reluctant to admit their own faults. In both cases, the personnel who identified the erosion and
took the initiative to evolve the software had not been involved in the original development of
the software. In the QP case this was because people had left Baan whereas in the PSS case, the
work was assigned to different teams.

5.1.3. Causes: what are common causes for erosion?

In order to effectively repair an eroded system, the causes of the issues that are responsible for the
erosion need to be understood. We have found that both cases had a number of common issues.
Consequently, these issues are also likely to share the same causes.

• Uncertainty about the evolution of the system. In both cases we reconstructed the evolution of
the involved systems by interviewing the involved personnel. We found that the persons we
interviewed did not always agree on the details. For example, in the PSS case, some personnel
attributed particular changes to wrong versions of the system. In the QP case on the other hand,
one of the interviewees indicated that he had only been working on the NQP and never worked on
the old QP components. Consequently, he could not tell us very much about the various versions
of the old QP.

• Lack of knowledge about early design decisions. In both cases, all or most of the original
developers were either no longer working on the system or had left the company entirely.
Consequently, many of the design decisions taken early in the evolution of the software were

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

298 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

poorly understood. Particularly in the case of the QP, maintenance became more problematic
after the person who had designed QP left Baan. In the case of the PSS package, the designers
worked in a different location than the people who implemented it. After the transfer of the work
to another center, the group of people assigned to work on the PSS system had not previously
been involved with the PSS system.

• Too little attention to design during evolution. During the evolution of a system, changes
may occur that require that the software design be altered. In both cases, we found that little
attention to design was paid during the evolution. In particular, in the QP case there had been
significant, mostly undocumented, changes to the design and even the architecture of the system.
The cumulative effect of these changes defined the behavior of the system rather than that the
software implemented a particular specification. This can partially be explained by the fact that
during the lifetime of the system, software practice within Baan R&D evolved substantially.
We mentioned earlier the increased rigor in software processes as well as the extensive standards
for application programming in the Baan 4GL language.

• Quick fixes. During the evolution of a system, defects are found and fixed (in [12] this is called
corrective maintenance). The proper way to fix a defect is to analyze the defect, design a solution,
implement, and test the solution. Unfortunately, time-pressure or cost considerations may prevent
the personnel from properly following this process. Often this results in quick fixes that address
the issues but that may also introduce additional issues. In particular, in the PSS case we observed
that the existing process for processing change requests (which is the common way for fixing
large issues) had not always been followed. The QP components never had a proper design and
consequently any changes to that design had never been properly documented.

• Release pressure. Both of the systems we examined are part of the Baan ERP product line,
which evolves through a series of regular releases [12]. Work on the software in the systems in
the product line has to be synchronized with these releases [12]. In the PSS case this proved to
be an issue with the first release of PSS. The project for PSS2 included a careful planning phase
and the software was finished in time for the release. In the QP case, the work on NQP was split
over two releases to ensure that each release would include a working QP.

• Requirement changes. In both cases, new requirements were added which were problematic
(also see identification in Section 5.1.2). In the PSS case, the initial requirements formed the basis
for a prototype. However, during the work on this prototype, new requirements were added to
the project. In the QP case on the other hand, the QP components went through several revisions
that radically changed the behavior and functionality of the components.

• Education. In particular, in the PSS case a significant amount of the problems can be attributed to
personnel inexperience. Had they been more aware of the processes and programming techniques
in the Baan ERP product line, some of the problems could have been avoided.

5.1.4. Resolution: what kinds of solutions are applied to fix an eroded system, and how and when do
decisions need to be made with respect to preservation and repair?

Once it has been determined that a system is eroded, and once causes have been identified, an attempt
can be made to repair the system and prevent further damage. The obvious things that can be done and
that we have observed in the case studies are as follows.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 299

• Redevelopment. Redevelopment of the software is often the only real option during evolution
for fixing an eroded portion of a system. This approach was chosen in the QP case since the
evaluation showed that merely addressing the known defects would not result in a better quality
system, which was required to serve as a base for additional enhancement.

• Restructuring. The people working on the PSS chose to restructure the existing system and
reserved a significant amount of time for it.

• Strong focus on design. As pointed out earlier, the lack of up to date designs and specifications is
usually one of the problems with eroded systems. In both cases, recovering/updating the designs
was an integral part of the attempt to address the problems and a key to the success of the
whole operation. By making the design more explicit, the QP personnel were able to test their
software more effectively. In addition, unspecified/unintended behavior could be treated as a
defect because the correct behavior was specified.

• Modularization and object orientation. In both cases, the personnel complained about the fact
that the source code was in bad shape and that there were many dependencies between the various
modules and components in the system. In both cases object-oriented type mechanisms such as
encapsulation, information hiding, and delegation were applied to improve the structure of the
system. In the PSS case this resulted in smaller modules, whereas in the QP case, the stage 1
development was able to reuse classes from the stage 0 development.

5.1.5. Prevention: what practices help prevent erosion and what were the good practices that were
applied in both cases?

The maintainers of the systems we examined in this paper have experienced first hand what it takes
to recover a deteriorated system as they evolve. Naturally, they made an effort to learn from their
experience to adapt the ways used such that future problems can be avoided. In the cases we examined,
a number of practices were adopted that appear to be successful in forestalling future problems.

• Automatic regression testing. In order to prevent new defects from being introduced during defect
fixing, automated tests can be used to verify that the system still works satisfying requirements.
In the QP case, automated tests were created for each new feature. In addition, when defects were
fixed, an automated test was created to verify that the defect was fixed. Over time, the number of
automated tests has grown to more than 800 tests, which are run after each change to the system.
Personnel are now confident that if the system passes all tests after a change that no regressions
have occurred.

• No undocumented fixes. Both the QP and the PSS shared the problem that in the past there had
been undocumented changes. This makes it hard both to test the system and to use the system
correctly. To address this, a detailed process for fixing defects is now commonly used in the PSS
system. In the QP system, any behavior that is not specified is considered to be a defect and the
proper way to correct or add new behavior starts with a proper design phase.

• Stronger focus on process. Part of the problems with the PSS can be attributed to the fact that the
existing software work processes were not enforced. It has been good practice to follow a certain
process for incorporating customer change requests, for instance. In the old PSS, time pressure
often caused personnel to by-pass this process. In the QP case, the processes evolved during its
evolution. The NQP evolution was done using the same processes that are used throughout Baan
nowadays.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

300 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

• Product releases. Software work within Baan is driven by the product releases. Consequently,
any adaptation projects such as the adaptive, corrective and enhancive projects of both cases,
need to be finished in time in order to be ready for the release. This requires careful planning
because generally, product releases are not delayed because individual projects are not ready.
In the QP case, this was the reason to plan a two-staged release. In the PSS case, one of the
problems was that the initial release was not finished in time for a product release.

• Team composition. A problem in the PSS case was that the software work was done by a
relatively inexperienced team. A consequence of this was that errors with respect to process
and technology were made that would likely have been avoided by a more experienced team.

5.2. Good practices

We highlight a few of the practices we observed since we believe that they are good practices, and that
others who are involved in software evolution could benefit by taking notice of them as well.

5.2.1. Diagnosis of design erosion

As argued earlier, in both cases the interviewees cited a number of symptoms that they observed in
their systems. By being alert to these symptoms, organizations may be able to identify problematic
subsystems in an earlier stage and act appropriately. Some good design erosion diagnosis practices we
observed are as follows.

• Monitoring defect metrics. Important symptoms of design erosion are the defect rate and the
average time needed to fix these defects. Defect rate metrics are relatively easy to collect,
and can serve as an early warning system for problematic systems. The number of defects is
relevant, but so is the average cost/time to fix a defect. In both cases, these two metrics showed
that something had to be done. Monitoring of these metrics by management may help identify
problems with respect to eroding designs at an early stage. The defect reporting system also
assists in discovering the precise location of the defects, even in case of defects having roots in
or ripples into other components.

• Performing code reviews. Code reviews and Fagan inspections may help to detect problems with
respect to code quality and design problems [14]. In both cases, personnel were complaining
about the poor quality of the implementation code. They identified this as an important reason
as to why it was hard to make changes to the systems.

• Involving different people. An important aspect of both cases was that the decision to
replace/repair the system was not taken by the original developers of the system, but by people
who had inherited the system from their predecessors. Apparently, it helps to involve new people
in diagnosing an eroding system and in evolving it to improve it.

5.2.2. Decisions about the future of the system

As became clear in the Baan cases, once it has been determined that a particular subsystem is eroded,
we observed three things done to evolve the system.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 301

• Repair the system. In the PSS case, the personnel decided (after an evaluation) that the system
could be repaired and that replacing it would be more expensive than repairing it. So a plan was
made to repair it.

• Replace the system. In the QP case, the affected personnel concluded that replacing the
system was economically more feasible than attempting to fix the known defects. A two-staged
replacement scenario was chosen.

• Nothing/continue to maintain system. Sometimes it may not be economically feasible to either
repair or replace the system. In such cases, the choice may be made to do nothing at all. This may
mean, for instance, that the organization accepts that change requests for such a system have a
high cost or that the operational dependencies on the system are reduced.

We observed that the decision as to what to do with a system should be based on a thorough
evaluation of the situation and should include expectations about future requirements and change
requests, estimates of maintenance/evolution costs, estimates on additional license revenues etc.
It should be noted that doing nothing also has an associated cost (e.g., increasing corrective
maintenance cost, reduced ability to absorb new requirements, etc.). Interestingly, in both cases the
evaluation was done by people who were not involved in the initial development. This suggests that
these kinds of evaluations should preferably be done by people who are not directly involved with the
doing the work.

In particular, the approach taken in the QP case seems illustrative. There the personnel simply
took the number of existing change requests, the knowledge that each change request had a certain
associated cost (which was much higher than it should be), and multiplied the numbers, which gave
them a rough estimate of what it would take to get the system in an acceptable state. Then they also
took into account that it was very likely that this maintenance effort would introduce new, equally hard
to fix defects and that there would likely be more change requests by the time they had finished. Based
on this assessment, it became apparent that completely replacing the QP existing system was more
cost-effective as a way to achieve the evolution in the product line than continuing to maintain that QP
system.

A process that might be suggested is to be alert to symptoms of design erosion. In case of strong
indications that something is wrong, an evaluation such as outlined above should take place. Preferably,
external people should be involved in the evaluation to allow for a more objective judgment. Based on
a cost estimation of the three outlined measures, a decision may then be made.

5.2.3. Solutions

In both cases, we have seen that a number of technical and non-technical practices have been adopted
to resolve the situation and prevent further damage.

• Object orientation. In particular, in the QP case the personnel used object-oriented mechanisms
to their advantage to improve modularity, extensibility, and reusability. However, in the PSS case,
personnel also applied typical object-oriented mechanisms such as information hiding and even
a primitive form of inheritance to reduce the number of dependencies and reduce the amount of
copy-paste reuse that plagued the old version of the software.

• Process. In an organization as large as Baan R&D, process is the key means to control the
progress of the software work. In the PSS case, there were a number of issues with the

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

302 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

enforcement of existing processes. This led to a situation where qualitatively poor enhancements
slipped through and where specifications and designs no longer accurately represented the
functionality of the system. The PSS case in particular benefitted from a stricter enforcement
of the existing processes, which are designed to prevent many of the problems the original PSS
system had.

• Regression testing. While automated tests cannot completely ensure that a system is free of bugs,
it does help ascertain that new changes do not break existing functionality. In particular, the QP
case demonstrated that creating automated tests for each feature and each change request helps
prevent regressions and increases the overall stability of the system.

• Refactoring. In the PSS case, a significant amount of time was reserved for refactoring.
Convincing the management of the necessity to reserve time for refactoring proved hard.
However, the success of the refactoring in the PSS case has clearly demonstrated the benefits.

• Release planning. Because large maintenance efforts may not fit within scheduled releases, Baan
has implemented a company-wide requirements management process to estimate and schedule
the different requirements over the subsequent releases [6]. Large maintenance efforts are split
into several requirements, which are mutually related, and for each of them the workload is
estimated by the architects. In the QP case this process led to the decision to divide the work into
a stage 0 and a stage 1 release. Both of these stages were completed and released in time to be
incorporated in a major Baan release.

5.3. Related work

Perry and Wolf, in their paper on software architecture, make a distinction between architecture
erosion and architectural drift [4]. Architectural erosion, according to Perry and Wolf, is the result
of ‘violations of the architecture’. Architectural drift, on the other hand, is the result of ‘insensitivity
to the architecture’ (the architecturally implied rules are not clear to the software engineers who work
with it). The second case study is an example of architectural drift since the understanding of the system
decreased by assigning the work to a new team.

Parnas, in his article on software aging [3], observes similar phenomena. Although he does not
explicitly talk about erosion, he does talk about aging of software as the result of bad design decisions,
which in turn are the result of poorly understood systems. In other words, erosion is caused by
architectural drift. As a solution to the problem, Parnas suggests that software engineers should
design for change, and should pay more attention to documentation and design review processes.
He also claims that no coding should start before a proper design has been delivered. In [2], Jaktman
et al. present a set of characteristics of architecture erosion. Some of these characteristics are also
identified in our own case study. In their case study, Jaktman et al. aimed to gain knowledge about
how architecture quality can be assessed. Assessing architecture erosion is an integral part of this
assessment. Finally, in [15], Glass discussed how accumulated changes may push a product to the
‘ragged edge of its design envelope’, where small changes tend to be very expensive.

To avoid making bad design decisions, software personnel can consult a growing collection of
patterns (e.g., the GoF (Gang of Four) book [16] and Buschmann et al.’s collection of architecture
styles and patterns [17]). However, while design patterns are good for solving specific design problems,
a side effect of applying them is usually that the design becomes more complicated.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 303

A relatively new approach to countering design erosion is refactoring [18], a process where the
existing implementation of a system is changed to improve the design of the implementation. Fowler
et al. presented a set of refactoring techniques that can be applied to a working program. By using these
techniques, some violations of good design can be replaced. Unfortunately, some of the refactoring
techniques can be labor intensive, even with proper tool support (e.g., Roberts et al. [19]).

Yet another approach is to pursue separation of concerns. The general idea behind separation of
concerns is to capture and modularize the functionality related to a particular concern. By separating
concerns, the effect of changes to a concern can be isolated. For instance, by separating the concern
about synchronization from the rest of the system, changes in the synchronization code will not affect
the rest of the system. Examples of experimental approaches that aim to improve separation of concerns
are Aspect Oriented Programming [20], Subject Oriented Programming [21] and Multi-Dimensional
Separation of Concerns [22].

However, as is demonstrated in this paper, design erosion is as much a result of non-technical issues
(e.g., the work processes) as it is from purely technical issues. In fact, a significant amount of the
measures that were taken in the Baan cases can be characterized as non-technical. It is not surprising
that many of these measures are derived from or inspired by recent research into software development
and maintenance methodologies. For example, the automated tests in the QP case that are used to verify
whether the system has regressed or not and still meets its requirements is also a center piece of many
spiral and iterative methods for software evolution (e.g., [23–25]).

Glass, in his book on software engineering facts and fallacies, grudgingly admits to non-technical
factors such as management being more important than technical factors in both the successes and
failures of software projects [15]. Our case studies confirm this.

5.4. Future work

As we indicated in Section 2, our research approach is based on mostly qualitative data. There are
a number of reasons we provide only a limited amount of quantitative data (e.g., in the form of
qualitative statements about internally available defect metrics). The most important reason is that
such quantitative data is considered to be sensitive data in the software industry. In addition, due to
the explorative nature of the study, there are no predefined hypotheses that can be easily tested in a
quantitative fashion. Our study, however, can give rise to additional quantitative research. For example,
the relation between defect metrics and software quality could be examined in more detail.

As indicated in Section 2.4, Baan is a large software company, which can be seen as representative
for the domain they operate in. However, we believe that some of our conclusions are more widely
applicable. Therefore, it would be worthwhile to repeat this study across a number of other product
software companies to identify additional best practices and to validate whether the findings of this
study can be generalized to other companies within the same domain and software companies working
in different domains.

6. LESSONS LEARNED

The most important lesson that may be learned from both cases is that design erosion is not
simply the result of incompetence, negligence, or other failures of either organization or individuals.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

304 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

Instead, it is the result of the ever-changing context of the system. Over time, staff, organization,
processes, requirements, and technology are all subject to change. These changes affect the evolution
of the software and all contribute to a gradual degradation in software quality.

As argued in our earlier research [5], there is a certain inevitability to design erosion. Therefore, a
software organization should not be judged by whether or not parts of its software are eroded but by
how they deal with the situation. A properly functioning software organization will be able to detect
design erosion, and based on a thorough analysis of the situation will also be able to determine whether
it is economically feasible and desirable to address it. Judging from our two case studies, Baan R&D
is a healthy organization in that respect since it properly identified and repaired eroded software sub-
systems in their product in a controlled style. Both sub-systems are in a satisfactory condition now and
their respective maintainers have adjusted their work processes in order to prevent further problems.
Throughout both projects, Baan shipped multiple, fully-functional Baan ERP releases to customers. In
the QP case, a working QP component was shipped each time whereas in the PSS case, it was decided
not to make the prototype available to customers.

The case study also confirms some of our conclusions from our earlier work [5]. In particular, the QP
case has demonstrated how subsequent releases of a software product may introduce design changes
that conflict with earlier decisions. These changes arise from new or changed requirements that, in
earlier releases, were not anticipated or foreseen. The PSS case is less illustrative in this respect, but it
does clearly demonstrate that design erosion can occur within one release given enough changes in the
software’s context. Additionally, it is illustrative of the fact that non-technical factors play at least as
large a role as technical factors. For example, assigning the maintenance of the PSS system to another
team caused problems with respect to the understandability of the software. In addition, process issues
were an issue with the PSS case.

The main purpose of these exploratory case studies was to investigate problems and issues with
respect to design erosion in software developing organizations. By selecting two systems that we knew
had recently gone through extensive refactoring to address significant problems in these systems, we
have been able to reconstruct the evolution of these systems and analyze how the design erosion was
identified, what the causes were for the problems, and how they were compensated for.

In both cases, before addressing the erosion problems, an internal evaluation was done to analyze the
system. This evaluation was triggered by a number of symptoms, including code quality, deployment,
and other problems. The defect metrics that are routinely collected by Baan played a crucial role in
both cases. Another important factor was the fact that the people who initiated the evaluation had not
been involved with the initial development of the involved software.

Altogether, the design erosion was caused by a combination of technical (e.g., the QP design was
problematic) and non-technical factors (e.g., in the PSS case the change process was not properly
enforced). In particular, the QP case confirms some of the causes for design erosion we identified in [5].
Subsequent design decisions essentially reversed some of the design decisions taken in the beginning
of the evolution of this software component. In the end, it proved easier to redo the component to meet
the new requirements rather than continue to maintain the result of the accumulation of more than a
decade of adaptive and corrective maintenance. Most of the adaptations we identified arose from new
requirements that would have been hard to predict when the original QP component was designed
(e.g., supporting SQL features that did not even exist when the QP component was first
developed).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

DESIGN PRESERVATION OVER SUBSEQUENT RELEASES 305

This confirms our most important conclusion from [5]: design erosion is inevitable because
subsequent, unpredictable changes may be incompatible with earlier design decisions. As we have
seen in both cases, it can be cost effective to do something about it. In the case of the QP component, it
proved to be cost effective to invest in a replacement component, whereas in the PSS case an extensive
refactoring project addressed the identified problems adequately.

In addition to analyzing problems and causes, we examined the way the problems are solved.
The solutions included the adoption of processes of higher professional standards, object orientation,
requirements management processes, refactoring, and regression testing. The applied solutions also
confirm that design erosion is a serious problem since both software systems required expensive
evolution projects to address the erosion problems. However, it was determined beforehand that these
projects would be cost effective, and both projects were taken to very successful conclusions.

ACKNOWLEDGEMENTS

We thank SSA Global–Baan for its cooperation in these case studies. In particular, we thank Gerwin Ligtenberg,
Bart Kasteel, Peter Romeijn, and Pierre Breuls for the discussions about the two case studies and their feedback
on this paper.

REFERENCES

1. Cusumano MA, Yoffie DB. Competing on Internet Time: Lessons from Netscape and its Battle with Microsoft. The Free
Press: New York NY, 1998; 384.

2. Jaktman CB, Leaney J, Liu M. Structural analysis of the software architecture—a maintenance assessment case study.
Proceedings of the 1st Working IFIP Conference on Software Architecture (WICSA1). Kluwer: Deventer, The Netherlands,
1999; 455–470.

3. Parnas DL. Software aging. Proceedings of the International Conference on Software Engineering (ICSE 1994). ACM
Press: New York NY, 1994; 279–287.

4. Perry DE, Wolf AL. Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes 1992;
17(4):40–50.

5. Van Gurp J, Bosch J. Design erosion: Problems and causes. Journal of Systems and Software 2002; 61(2):105–119.
6. Svahnberg M, Bosch J. Characterizing evolution in product-line architectures. Proceedings of the IASTED 3rd International

Conference on Software Engineering and Applications. Acta Press: Calgary, Canada, 1999; 92–97.
7. Brinkkemper S. Method engineering with Web-enabled methods. Information Systems Engineering: State of the Art and

Research Themes Brinkkemper S, Lindencrona E, Sølvberg A (eds.). Springer: London, 2000; 123–133.
8. Basili V. Editorial. Journal of Empirical Software Engineering 1996; 1(2):1–2.
9. Basili V, McGarry FE, Pajerski R, Zelkowitz MV. Lessons learned from 25 years of process improvement: The rise and

fall of the NASA Software Engineering Lab. Proceedings of the International Conference on Software Engineering (ICSE
2002). ACM Press: New York NY, 2002; 69–79.

10. Seaman CB. Qualitative methods in empirical studies of software engineering. IEEE Transactions of Software Engineering
1999; 25(4):557–572.

11. Elmasri E, Navathe SB. Fundamentals of Database Systems. Benjamin/Cummins: Redwood City CA, 1994; 600.
12. Chapin N, Hale JE, Khan KMd, Ramil JE, Tan W-G. Types of software evolution and software maintenance. Journal of

Software Maintenance and Evolution: Research and Practice 2001; 13(1):3–30.
13. Brinkkemper S. RE for ERP: Requirements management for the development of packaged software. Proceedings 4th

International Symposium on Requirements Engineering (RE’99). IEEE Computer Society Press: Los Alamitos CA, 1999;
159.

14. Van Genuchten M, Van Dijk C, Scholten H, Vogel D. Using group support systems for software inspections. IEEE Software
2001; 18(3):60–65.

15. Glass RL. Facts and Fallacies of Software Engineering. Addison-Wesley: Reading MA, 2002; 224.
16. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley: Reading MA, 1995; 416.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

306 J. VAN GURP, S. BRINKKEMPER AND J. BOSCH

17. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley: New York NY, 1996; 476.

18. Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code. Addison-Wesley:
Reading MA, 1999; 431.

19. Roberts D, Brant J, Johnson R. A refactoring tool for Smalltalk. Theory and Practice of Object Systems 1997; 3(4):253–
263.

20. Kiczalez G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J. Aspect oriented programming.
Proceedings of ECOOP 1997. Springer: Berlin, 1997; 220–242.

21. Harrison W, Ossher H. Subject-oriented programming (a critique of pure objects). Proceedings of OOPSLA 1993. ACM
Press: New York NY, 1993; 411–428.

22. Tarr P, Ossher H, Harrison W. N degrees of separation: Multi-dimensional separation of concerns. Proceedings
International Conference on Software Engineering (ICSE 1999). IEEE Computer Society Press: Los Alamitos CA, 1999;
107–119.

23. Boehm B. A spiral model of software development and enhancement. IEEE Computer 1988; 21(5):61–72.
24. Beck K. Extreme Programming Explained. Addison-Wesley: Boston MA, 2000; 190.
25. Cockburn A. Agile Software Development. Addison-Wesley: Boston MA, 2001; 256.

AUTHORS’ BIOGRAPHIES

Jilles van Gurp is a software architect and engineer at Creative Development, a
manufacturer of a content management software product in Nijmegen, The Netherlands.
He obtained a computer science masters degree from the University of Utrecht in 1998,
a licentiate degree from the Blekinge Institute of Technology in Sweden in 2001 and a
PhD from the University of Groningen in 2003. In 2003 he worked at the same university
and continued research in the context of the IST Status project and the ESF RELEASE
network.

Sjaak Brinkkemper is professor of Organisation and Information at the Institute
of Information and Computing Sciences of the University Utrecht, The Netherlands.
Previously, he was a consultant at the Vanenburg Group and a Chief Architect at
Baan. Before Baan, he held academic positions at the University of Twente and the
University of Nijmegen, both in The Netherlands. His research interests include software
product development, information systems methodology, meta-modelling, and methods
engineering. He holds a BSc from the University of Amsterdam, and a MSc and a PhD
from the University of Nijmegen.

Jan Bosch is a vice president and head of the Software and Application Technologies
Laboratory at Nokia Research Center, Finland. Earlier, he headed the software engineering
research group at the University of Groningen, The Netherlands. His research activities
include software architecture design, software product families, software variability
management, and component-oriented programming. He has organized numerous
workshops, and served on many programme committees and steering groups. He received
a MSc degree from the University of Twente, The Netherlands, and a PhD degree from
Lund University, Sweden.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:277–306

	1 INTRODUCTION
	1.1 Software erosion and design preservation
	1.2 Research questions
	1.3 Organization of this paper

	2 RESEARCH METHOD
	2.1 Case selection
	2.2 Interviews
	2.3 Validation
	2.4 Limitations of this study

	3 CASE 1: THE QUERY PROCESSOR
	3.1 Evolution
	3.2 Problems and causes
	3.3 Solutions
	3.4 Analysis

	4 CASE 2: PURCHASE AND SALES SCHEDULES
	4.1 Evolution
	4.2 Problems and causes
	4.3 Solutions
	4.4 Analysis

	5 DISCUSSION
	5.1 Research questions
	5.1.1 Symptoms: what are the effects of design erosion on a system?
	5.1.2 Identification: how does an organization decide that its software is eroding and needs to be repaired?
	5.1.3 Causes: what are common causes for erosion?
	5.1.4 Resolution: what kinds of solutions are applied to fix an eroded system, and how and when do decisions need to be made?
	5.1.5 Prevention: what practices help prevent erosion and what were the good practices that were applied in both cases?

	5.2 Good practices
	5.2.1 Diagnosis of design erosion
	5.2.2 Decisions about the future of the system
	5.2.3 Solutions

	5.3 Related work
	5.4 Future work

	6 LESSONS LEARNED

